

Dessalement de deux mosaïques d'Orbe-Boscéaz par application de compresses

Evaluation de l'influence de différentes charges minérales de compresse

Mémoire présenté par :

Nadège Barbezat

Pour l'obtention du

Master of Arts HES-SO in Conservation-restoration Orientation objets archéologiques et ethnographiques

Année académique 2014-2015

Remise du travail : 20.07.2015

Jury : 26-27.08.2015

Nombre de pages : 85

Engagement

« J'atteste que ce travail est le résultat de ma propre création et qu'il n'a été présenté à aucun autre jury que ce soit en partie ou entièrement. J'atteste également que dans ce texte toute affirmation qui n'est pas le fruit de ma réflexion personnelle est attribuée à sa source et que tout passage recopié d'une autre source est en outre placé entre guillemets. »

Date et signature :

Remerciements

J'aimerais remercier toutes les personnes qui m'ont aidée à réaliser ce mémoire et sans qui ce projet n'aurait pas vu le jour, notamment :

Bénédicte Rousset, docteur en pétrophysique, membre du Conservation Science Consulting Sàrl et mentor dans le cadre de ce mémoire, pour les connaissances et compréhensions de phénomènes physiques, son encadrement, ses conseils et son soutien.

Noé Terrapon, responsable du laboratoire de conservation-restauration des sites et musées d'Avenches et responsable de stage dans le cadre de ce travail de diplôme, pour son encadrement, ses conseils, ses encouragements, et surtout pour m'avoir proposé ce sujet de diplôme. Je remercie aussi toute l'équipe du laboratoire pour leurs conseils, leur accueil et leur gentillesse.

Christine Bläuer, docteur en minéralogie et membre du Conservation Science Consulting Sàrl, pour son aide dans l'interprétation de résultats d'analyses.

Mirko Kipfer, responsable des départements de chimie, cuirs et polymères du laboratoire Dubois, et toute son équipe pour l'accès gratuit aux analyses d'IC et d'ICP-OES, ainsi que pour leur accueil et leur gentillesse.

Claude Félix, géologue et ancien membre de l'Expert Center, pour ses explications sur la méthode d'analyse de porosimétrie, l'obtention de documents d'anciennes analyses et ses conseils.

Jean-Pierre Sizun, Maître de Conférences au Département de Géosciences de l'unité mixte de recherche du CNRS, pour les analyses de porosimétrie et la rapidité d'obtention des résultats.

Le directeur Régis Bertholon et le corps enseignant de la Haute-Ecole Arc, et plus spécifiquement Hortense de Corneillan, Valentin Boissonnas, Christian Degrigny, et Tobias Schenkel pour leur suivi et leur supervision dans le cadre de ce mémoire.

Ma famille et mes amis, pour leur soutien et leurs encouragements.

Table des matières

AŁ	ostracts		5	
In	troduction G	énérale	7	
1.	Etat de l'art		9	
	1.1 Pro	cessus physico-chimiques nécessaires à la compréhension du travail	9	
	1.1.1.	Les solutions aqueuses dans la porosité : transfert par capillarité	9	
	1.1.2.	Transfert de matière par diffusion	. 10	
	1.1.3.	Transfert de matière par advection	. 10	
	1.1.4.	Transfert de chaleur (et de matière) par convection thermique	. 10	
	1.2 Les	sels et les matériaux poreux	. 11	
	1.21 Les	sels	. 11	
	1.2.2 L'ea	au et les sels	. 11	
	1.2.3 Le	ou les sels	. 12	
	1.2.4 La	cristallisation et l'hydratation des sels dans les matériaux poreux	. 12	
	1.3 Méthod	es de dessalement des mosaïques	. 12	
	1.4 Les risq	ues d'un dessalement	. 14	
2.	Présentation	n des mosaïques	. 15	
	2.1 Présent	ation du site	. 15	
	2.1.1 Env	vironnement géographique et climatique	. 15	
	2.1.2 Histoire du site			
	2.1.3 Identification des mosaïques			
	2.1.4 Res	staurations antérieures	. 21	
	2.1.5 Mesures de conservation préventive actuelles			
	2.2 Problém	natique des sels sur le site	. 24	
	2.2.1 Co	nstat d'état	. 24	
	2.2.2 Diagnostic		. 27	
	2.2.3 Pro	nostic	. 30	
3.	Analyse des	espèces ioniques	. 31	
	3.1 Echantil	lonnage	. 31	
	3.1.1 Pré	lèvement dans la mosaïque n°8 (tesselles et mortier)	. 31	
	3.1.2 Pré	lèvement dans la mosaïque n°7 (mortier de restauration)	. 32	
	3.1.3 Conditionnement et préparation des échantillons			
	3.2 Méthodes d'analyses (CI et ICP-OES)			
	3.2.1 Ch	omatographie ionique (IC)	. 33	
	3.2.2 Spe	ectrométrie d'émission optique avec plasma à couplage inductif (ICP-OES)	. 34	
	3.3 Résulta	ts	. 35	

	3.3.1 Teneurs en ions de la mosaïque n°8 (tesselles et mortier)	35
	3.3.2 Teneurs en ions de la mosaïque n°7 (mortier de restauration)	36
	3.3.3 Autres résultats concernant l'analyse	36
	3.4 Interprétation	37
	3.4.1 Mosaïque n°8 (tesselles et mortier)	37
	3.4.2 Mosaïque n°7 (mortier de restauration)	37
	3.4.3 Interprétations générales sur les ions présents et leur origine possible	38
4.	. Objectifs et propositions de conservation-restauration	39
5.	. Préparation des planelles	39
	5.1 Choix du matériau	39
	5.2 Préparation des planelles	40
	5.3 Climat	40
6.	. Compresses	40
	6.1 Choix des matériaux et des proportions	40
	6.2 Caractéristiques des compresses	41
	6.2.1 Conductivité électrique	41
	6.2.2 Porosité des matériaux et des compresses	42
	6.2.3 Ouvrabilité	53
	6.3 Méthode	53
	6.3.1 Préparation des mosaïques	53
	6.3.2 Préparation des planelles	54
	6.3.3 Préparation des compresses	54
	6.3.4 Application sur la surface	54
	6.3.5 Suivi	54
	6.4 Constats après application sur l'ouvrabilité des compresse	55
	6.4.1 Densité	55
	6.4.2 Teneur en eau	56
	6.4.3 Application et retrait	56
	6.4.3 Microorganismes	57
	6.5 Synthèse	60
7.	. Résultats du dessalement	61
	7.1 Résultats	61
	7.1.1 Mosaïque n°8 (tesselles et mortier)	65
	7.1.2 Mosaïque n°7 (mortier de restauration)	65
	7.1.3 Planelles	66
	7.2 Interprétation	67
	7.2.1 Mosaïque n°8 (tesselles et mortier)	67

7.2.2 Mosaïque n°7 (mortier de restauration)	67
7.2.3 Planelles	67
Discussion	68
Conclusion générale	70
Références bibliographiques	71
Liste des figures	77
Liste des tableaux	79
Liste des abréviations et des sigles	80
Lexique	81

Abstracts

Les mosaïques d'Orbe-Boscéaz souffrent de la présence constante de sels dans la porosité des matériaux, notamment de sulfates de sodium et de calcium. Ces sels, sous forme soluble en été, cristallisent chaque hiver. Depuis près de 150 ans, des altérations sont associées à ce phénomène, malgré les mesures de conservation préventives établies.

Le but de ce travail est de définir les constituants de compresses qui permettent de retirer les sels des mosaïques.

Des prélèvements dans la mosaïque n°8 dite « aux divinités » et dans le mortier de restauration de la mosaïque n°7 dite « aux carrés et losanges » ont été analysés par chromatographie ionique (CI) et induction par plasma couplé et spectrométrie à émission optique (ICP-OES). Les résultats obtenus ont révélé la répartition des ions de chacun des prélèvements sur trois profondeurs.

A partir de ces résultats et de leur interprétation, des tests de dessalement ont été effectués sur des emplacements localisés des mosaïques. Les compresses ont été comparées en fonction de leur ouvrabilité, c'est-à-dire : de leur densité, leur teneur en eau, la facilité de leur application et de leur retrait et la présence ou l'absence de microorganismes lors de leur utilisation. Deux compresses de composition différente (avec perlite ou avec sable) ont été appliquées sur chacune des deux mosaïques. Les deux compresses de sable et une des deux compresses avec perlite ont significativement diminué la teneur en ions des mosaïques dans les profondeurs analysées. L'absence d'efficacité de la compresse avec perlite appliquée à la mosaïque n°8 serait attribuée à une saturation de la compresse par les ions Ca²⁺ provenant d'un matériau d'une restauration antérieure.

Un suivi visuel des mosaïques est nécessaire pour observer l'éventuelle cristallisation de sels dans les zones dessalées ou dans des emplacements qui jusqu'à maintenant ne présentent pas d'efflorescence. De plus, des mesures de conservation préventives supplémentaires doivent être mises en place avant d'envisager un dessalement plus global des mosaïques.

Pour augmenter le nombre de compresses à tester sur un substrat salin similaire, des planelles industrielles en terre cuite à la porosité semblable à la mosaïque n°8 ont été imprégnées de bains salins. Les tests de dessalement des planelles ont confirmé un transfert des sels des planelles aux compresses mais l'efficacité définitive du dessalement n'a pas pu être mesurée. Toutefois, ils ont permis de documenter les propriétés des différentes compresses et les limites de leur utilisation.

The mosaics of Orbe-Boscéaz suffers from salts presence, such as sodium and carbonate sulfates. Those salts crystallise ever winter and solubilize in spring. In spite of conservation measures, these weatering process continues for 150 years.

The purpose of this work is to define the constituents of compresses which allow to remove salts of mosaics.

Samples were/have been taken in the mosaic n°8 called "aux divinités" and in the restoration mortar of the mosaic n°7 called "aux carrés et losanges". They were analysed by ionic chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP-OES). Results revealed the ionic contents of each of the samples on three depths.

From these results and from their interpretation, tests of desalination are made on localized areas of the mosaics. Compresses are compared according to their workability, which are: density, moisture content, ease of their application and retreat and presence or absence of microorganisms during their use. Two compresses of different composition (with perlite or with sand) were applied to each of both mosaics. Both compresses of sand and one of the two compress with perlite significantly decreased the content in ions of mosaics in the analyzed depths. The absence of efficiency of the compress with perlite applied to the mosaic n°8 would be attributed to a saturation of the compress by the ions Ca²⁺ resulting from a material of a previous restoration.

A visual follow-up of mosaics is necessary to observe the possible crystallization of salts in the desalinated zones or in the locations which so far do not present of salt efflorescence. Furthermore, additional preventive conservation measures have to be done before a more global desalination of mosaics.

To increase the number of compresses to be tested (with perlite or with sand) on a similar salt substratum, industrial tiles in terracotta with a similar porosity to the mosaic n°8 was soaked into salt baths. The tests of desalination of tiles confirmed a transfer of salts of tiles into compresses but the definitive efficiency of the desalination was not able to be measured. However, those tests allowed to document the properties of the various compresses and the limits of their use.

Introduction Générale

Le travail présenté dans ce mémoire consiste en des essais de dessalement par application de compresses de deux mosaïques : la mosaïque n°7 dite « aux carrés et losanges » et la mosaïque n°8 dite « aux divinités » du site romain d'Orbe-Boscéaz.

Les mosaïques retrouvées sur ce site constituaient une partie du pavement d'une grande villa galloromaine qui a été découverte à partir du milieu du 19^{ème} siècle, sous des champs agricoles, à proximité d'une route cantonale. La découverte de cette infrastructure, conservant 9 mosaïques, a nécessité la mise en place de pavillons autour desquels un système de drainage a été installé en raison de la proximité d'une nappe phréatique. Les nombreuses interventions de restauration effectuées sur ces mosaïques ont été plus ou moins documentées en fonction des protagonistes et des connaissances techniques de leur époque. Il est donc particulièrement complexe de retracer le « vécu » de ces mosaïques, et ainsi à comprendre l'origine et les processus des altérations observées aujourd'hui.

Plusieurs mosaïques présentent des taches d'humidité. Leur présence peut être due soit à un apport d'eau dans les sols par des installations de drainage inadaptés, soit à la présence de sels, soit à une combinaison des deux situations.

Ces zones humides contiennent des sels qui cristallisent périodiquement en fonction de la température et de l'humidité saisonnière. Les sels sont des matériaux hygroscopiques : suivant le taux d'humidité relative ambiante, ils adsorbent la vapeur d'eau présente dans l'air et passent alternativement de l'état de solution à l'état de cristaux (efflorescences). Certains sels, une fois cristallisés, peuvent s'hydrater sans se solubiliser en fonction de T et HR. La cristallisation et l'hydratation des sels impliquent des variations volumiques. Ces variations de volume des cristaux au sein de la porosité des tesselles et du mortier des mosaïques entrainent des tensions dans les matériaux : si ces sels, une fois cristallisés, nécessitent un espace supérieur que celui à disposition, avec le temps des microfissures (puis fissures) apparaissent. Ainsi, des clivages et des soulèvements peuvent se former entre les différentes strates de la mosaïque. D'autres altérations peuvent se développer, comme la désolidarisation des tesselles par la dégradation des mortiers de joints, qui a pour conséquence une perte tangible des matériaux constitutifs mais aussi une diminution de la compréhension visuelle et de la visibilité du motif formé par les tesselles.

Dans le cas traité, des analyses ont déjà été réalisées sur des efflorescences de sels prélevées sur les mosaïques n°7 et 8, situées dans deux pavillons différents. Du sulfate de calcium, du carbonate de calcium et sulfate de sodium décahydraté (mirabilite, Na₂SO₄·10H₂0) ont été identifiée dans ces prélèvements. Il est connu que si la mirabilite est détectée, sa forme déshydratée (thénardite, Na₂SO₄) peut facilement se former en fonction des variations de T et HR et inversement, la thénardite se transforme facilement en mirabilite. La différence de volume de ces deux cristaux étant considérable, un dessalement des mosaïques s'avère nécessaire.

Un dessalement permettrait de retirer, entièrement ou partiellement, les sels contenus dans la porosité des mosaïques, interrompant ou limitant ainsi les processus d'altérations liés à la présence des sels.

Pour ce faire, il a été décidé d'effectuer un test de dessalement par application de compresse au niveau des taches humides. Dans un premier temps, il est nécessaire de déterminer la nature et la quantité exactes des espèces ioniques présentes dans les mosaïques. C'est pourquoi des échantillons sont analysés par chromatographie ionique (CI) et spectrométrie d'émission optique avec plasma à couplage inductif (ICP-OES). Dans un deuxième temps, quatre compresses composées d'argile (kaolin), de cellulose (Arbocel[®] BWW40) et d'une charge minérale (sable de quartz ou perlite) sont testées sur les deux mosaïques, afin d'évaluer leur efficacité sur les sels présents. Les mélanges à base de cellulose, d'argile et de sable de quartz ont été sélectionnés grâce à des articles récents démontrant leurs qualités de dessalement, dépendant notamment de leur ouvrabilité et leur porosité. La répétition de ces analyses sur les matériaux de la mosaïque et sur les compresses après application de ces dernières permettront de vérifier l'efficacité du dessalement.

En parallèle, d'autres compresses à base de ces 4 matériaux mais aux proportions variables sont testées sur des planelles en terre cuite précédemment salées avec les mêmes espèces ioniques et à concentrations similaires. Les planelles choisies ont une porosité similaire au mortier de la mosaïque n°8, afin de pouvoir transposer ces résultats sur les mosaïques. L'autre moitié correspond à ces mêmes compresses, mais où le sable de quartz a été remplacé par la perlite : ce matériau s'avère 20 fois plus léger (plus adapté pour des compresses verticales), moins cher que le sable de quartz, et aucune recherche n'a encore comparé son efficacité pour le dessalement de matériaux poreux avec d'autres charges.

1. Etat de l'art

1.1 Processus physico-chimiques nécessaires à la compréhension du travail

En restauration, une intervention de dessalement est envisagée lorsqu'un matériau poreux contient des sels et que lesdits sels provoquent une altération de l'objet, pouvant découler sur la séparation des différentes couches ou segments de l'objet, la perte de matière, le recouvrement d'une surface - empêchant ainsi son observation et son étude -, ou encore la dégradation du matériau.

La présence de sels et les altérations qui en découlent sont directement liées à la présence d'eau (sous forme liquide ou gazeuse), aux types de sels présents et au réseau poreux dans lequel le sel se trouve. C'est pourquoi les notions de bases concernant ces divers paramètres doivent être présentées avant d'approfondir le sujet.

D'autre part, la notion de climatisation étant importante dans l'exemple de conservation traité, nous rappellerons aussi brièvement les bases du phénomène de convection thermique.

1.1.1. Les solutions aqueuses dans la porosité : transfert par capillarité

Dans un liquide, les molécules interagissent avec toutes les autres molécules pour abaisser leur niveau d'énergie. A l'intérieur du liquide, ces interactions se répartissent de façon homogène autour de toute la molécule. Dans les bords, les interactions ne se situent que vers la partie intérieure du liquide. Ainsi, la tension superficielle (TS) du liquide est plus élevée en surface (ou au bord) qu'au centre de celui-ci. Si de l'eau et de l'air sont en contact avec une surface solide, un équilibre va s'établir en fonction de la TS des 3 milieux (air, eau, solide). Par exemple, si une goutte d'eau est déposée en surface du solide, son angle de contact varie en fonction des TS respectives entre l'air et l'eau, l'eau et le solide et l'air et le solide (cf. fig. X). Si l'angle formé par la goutte est inférieur à 90°, le liquide est considéré comme mouillant : la surface solide a une plus grande affinité avec le liquide qu'avec l'air, car leur interaction diminue davantage l'énergie totale¹. C'est la mouillabilité préférentielle.

La tension capillaire est la différence de pression entre deux fluides non miscibles dans un réseau poreux (capillaire). Grâce à la mouillabilité préférentielle, le fluide le moins mouillant (air) va être repoussé par le fluide le plus mouillant (eau), sans qu'une pression extérieure ne soit nécessaire : c'est l'imbibition capillaire. L'inverse, c'est-à-dire le déplacement du fluide moins mouillant (air) par le fluide plus mouillant (eau), nécessite un apport d'énergie et s'appelle le drainage.

De plus, plus le diamètre du pore est petit, plus la tension superficielle est grande. Ce phénomène s'explique par l'équation de Laplace :

¹ Rousset Tournier, 2001, p.26-28.

$$Pc = \frac{2\gamma}{r} \cos \alpha$$

Finalement, plus le diamètre du capillaire est large, plus le fluide se déplace rapidement² : c'est la loi de Poiseuille.

$$v_{max} = \frac{dP}{dx} \frac{r^2}{4n}$$

Pc = pression capillaire*y* = tension interfaciale*r* = rayon du capillaire*a* = angle de contact liquide/soluble

 v_{max} = vitesse maximale d'écoulement P = pression x = distance parcourue par le ménisque dans le tube n = viscosité dynamique du fluide

1.1.2. Transfert de matière par diffusion

La diffusion est un transport de matière d'une zone de plus grande concentration vers une zone de plus petite concentration pour se répartir de façon homogène³.

1.1.3. Transfert de matière par advection

L'advection est la capacité d'un fluide en mouvement de transporter de la matière, comme par exemple des ions solubilisés⁴. Ce processus peut se dérouler en phase liquide ou en phase vapeur. Pour que ce phénomène soit actif à l'intérieur d'un volume poreux, celui-ci doit être constitué par un réseau à porosité hétérogène : lors du séchage d'un matériau poreux comme une compresse, la solution qu'il contient se déplace des macropores vers les micropores, à cause de la tension capillaire (cf. équation de Laplace). Les macropores seront donc les premiers à sécher. Ce processus de transport de particules est plus rapide que la diffusion⁵.

1.1.4. Transfert de chaleur (et de matière) par convection thermique

La convection thermique est un processus de transfert de chaleur entre un fluide en mouvement (phase liquide ou gazeuse) et une surface, les deux n'étant pas à même température (T). Ce transfert se fait par diffusion et par le mouvement du fluide⁶. La convection naturelle se créée lorsque l'écoulement est provoqué par une différence de masse volumique du fluide qui varie selon sa T. La convection forcée se créée lorsqu'on forme artificiellement un mouvement de fluide par une force extérieure (pompe, ventilation, etc.)⁷.

² Rousset Tournier, 2001, p.30.

³ Menguy, 2015 [en ligne].

⁴ Pel *et al.*, 2013, p.23.

⁵ Ibidem.

⁶ BEI Energétique et Procédés, 2015 [en ligne].

⁷ Brau, 2009, p.94.

1.2 Les sels et les matériaux poreux

1.21 Les sels

Un sel est un composé chimique constitué d'un anion (électronégatif) et d'un cation (électropositif). Les sels se forment par des liaisons ioniques, c'est-à-dire par liaisons électrostatiques. Lorsqu'ils se lient, les ions forment une structure cristalline : un sel. Tous les ions sont plus ou moins solubles dans l'eau. Donc, en présence d'une certaine quantité d'eau (liquide ou vapeur), un sel se solubilise, sauf certains sels qui s'hydratent avant de se solubiliser. Son passage du stade liquide au stade cristallin (est inversement) dépend de l'humidité relative ambiante (en fonction d'une température) : on parle alors de l'humidité relative d'équilibre (HRE) d'un sel. Ainsi, un sel peut être présent dans un matériau poreux sous forme de solution, sous forme de sel cristallin ou sous forme de sel cristallin hydraté. Ces trois états de matière vont donc dépendre de la présence d'eau et de la température mais aussi de la pression, du type d'ions présents et de l'environnement (par exemple dans un milieu poreux ou sur une surface lisse)⁸.

1.2.2 L'eau et les sels

L'eau liquide se propage dans un matériau poreux par capillarité. La vapeur d'eau, en contrepartie, se déplace par diffusion et peut se condenser ou être adsorbée par la porosité du matériau⁹. Les sels présents dans les matériaux poreux sont véhiculés par l'eau sous forme liquide. Les sels provenant d'un environnement extérieur (sol et eau de pluie) sont amenés par l'eau liquide dans le substrat. Parfois, ils proviennent du matériau lui-même¹⁰.

Un matériau poreux absorbant de l'eau se dilate et se rétracte lorsqu'il sèche. Ainsi, des fluctuations d'hydratation du matériau poreux provoquent une fatigue du matériau, ayant pour conséquence des altérations structurelles (fissures, clivages, etc.) et/ou une dissolution/cristallisation de ses composants. La présence de sels peut influencer ce processus, soit en l'aggravant, soit en l'inversant¹¹.

En parallèle, la vapeur d'eau peut augmenter *l'humidité relative*^{*12} (HR) d'un milieu, de telle sorte qu'elle dépasse le taux d'HRE du sel présent. Ainsi, le sel au préalable cristallisé se dissout, forme une solution saline, et peut se déplacer dans le système poreux.

⁸ Bläuer et Rousset, 2014, p.306-307.

⁹ Bläuer et Rousset, 2009, p.71-72.

¹⁰ Charola, 2000, p.329.

¹¹ Charola, 2000, p.328-329.

¹² Les termes en italique suivi d'un astérisque sont expliqués dans le lexique, p.11.

1.2.3 Le ou les sels

La solubilisation ou cristallisation d'un sel dépend de HR et de T du milieu, mais aussi de la présence d'autres sels. En effet, la présence de certains sels augmente ou diminue la solubilité d'autres sels en présence. Par exemple, à 25°C, la HRE du chlorure de potassium est évaluée à 84,3%¹³. Si celui-ci est mélangé à du chlorure de sodium, dont la HRE est à 75,3%, leur HRE commune se situera entre 85% et 72,4%¹⁴. *« The effect of a wider RH range of a mixed solution within the pore system of a material will be compounded by the hygroscopicity and capillary of the latter, increasing the deterioration potential of the salts¹⁵. »*

1.2.4 La cristallisation et l'hydratation des sels dans les matériaux poreux

Alors que certains sels passent directement de l'état solide à liquide en fonction du climat (T et HR), d'autres, avant de se liquéfier, s'hydratent. Deux phénomènes physiques en découlent : la pression de cristallisation (hydrostatique) et la pression d'hydratation¹⁶.

« *Hydrostatic crystallisation pressure can develop when a supersaturated solution occupies a smaller volume than the precipitations crystals plus the residual saturated solution, as is the case for most common salts¹⁷. » Plus la pression croît, plus la solubilité des sels augmente. Et plus les pores sont fins, plus la pression est forte. Ainsi, l'agencement de la porosité du substrat influe sur le risque et le type d'altérations.*

La pression d'hydratation est une pression similaire à la pression d'hydratation, provoquée cette fois non pas par la cristallisation du sel, mais par l'absorption d'eau par le sel (vapeur ou liquide). Cependant, tous les sels hygroscopiques n'ont pas le même comportement lorsqu'ils s'hydratent : les recherches menées sur le sulfate de sodium ont abouti à la conclusion que sa forme hydratée ne se forme pas par absorption d'eau, mais par dissolution du cristal anhydre suivi d'une précipitation de la solution super saturée, cette fois sous forme de sel hydraté¹⁸.

1.3 Méthodes de dessalement des mosaïques

Le dessalement des mosaïques déposées se fait par bains dans de l'eau déminéralisée, en changeant régulièrement l'eau les bains jusqu'à obtenir une *conductivité électrique** (CE) de la solution faible ou nulle. Cette méthode simple et facile à mettre en œuvre s'avère efficace pour les objets mobiles, et est

- ¹⁴ Charola, 2000, p.330.
- ¹⁵ Ibidem.
- ¹⁶ Tsui *et al.*, 2003, p.109.
- ¹⁷ Charola, 2000, p.332.
- ¹⁸ Charola, 2000, p.334.

¹³ Arnold et Zehnder, 1991, p.113.

parfois terminée par l'application d'une compresse pour absorber les sels durant le séchage de l'objet mobile¹⁹.

Mais pour le patrimoine immobilier, comme les mosaïques conservées *in situ*, d'autres critères entrent en jeu. Premièrement, si un apport de sels est toujours actif, il doit être identifié et interrompu. Ensuite, il faut évaluer si la présence de sels présente un danger pour la conservation à long terme de l'objet et donc si un dessalement est nécessaire. Finalement, le dessalement en soi doit présenter moins de risques d'altérations pour la mosaïque elle-même que la présence des sels, par exemple lors de l'application de la compresse et de son retrait (facilité d'application et de retrait, poids, intensité du nettoyage nécessaire après l'application, etc.).

La méthode de dessalement majoritairement utilisée²⁰ consiste à appliquer sur la surface d'un substrat poreux une compresse composée soit de pulpe de cellulose, soit d'argile, soit d'un mélange de ces matériaux, le plus souvent avec une charge minérale²¹.

Les compresses les plus étudiées ces dernières années²² sont composées de 2 à 4 éléments, et se dirigent vers un modèle-type :

- Du kaolin, argile très pure, non-gonflante, utilisée pour sa granulométrie fine (elle est microporeuse) et sa faible capacité d'échange d'ions²³.
- De la pulpe cellulosique, un matériau *hygroscopique** qui conserve l'humidité et ralentit le séchage de la compresse. Elle augmente la cohésion du mélange grâce à la taille de ses fibres (entre 10 et 2000µm)²⁴ et est macroporeuse.
- Une charge « inerte », par exemple du sable, permettant de limiter les variations de volume lors du séchage de la compresse et de modifier la porosité du mélange.

Les mélanges les plus étudiés et les plus efficaces actuellement sont des compresses à base de kaolin, de sable de quartz et de fibre de cellulose²⁵. Chacun de ces matériaux a une porosité variable permettant d'influer sur la porosité finale de la compresse. Ainsi, de nombreux substrats aux porosités variées peuvent être dessalés uniquement en modifiant les proportions de ces 3 composants.

En effet, pour optimiser l'efficacité d'une compresse, la porosité de celle-ci doit être plus fine que la porosité du substrat. Ceci permet de favoriser le déplacement par capillarité des solutions salines du substrat vers la compresse (cf. équation de Laplace, p.10) et donc de permettre le déplacement des

- ²¹ Zezza, 2013, p.3 et Heritage *et al.*, 2013, p.8.
- ²² Heritage and Zezza, 2013. Et Bourguignon, 2009, p.62-65.
- ²³ Bourguignon, 2009, p.91-92.
- ²⁴ Bourguignon, 2009, p.93-94.
- ²⁵ Lubelli *et al.*, 2013, Bourgès et Vergès-Belmin, 2013, Lubelli et van Hees, 2013.

¹⁹ Franzen *et al.*, 2013, p.74.

²⁰ Heritage *et al.*, 2013, p.8.

ions du premier vers la seconde par le phénomène d'advection (cf. advection, p.10), ce qui accélère le processus de dessalement²⁶. Cependant, la porosité de la compresse doit rester la plus grande possible : en effet, plus la porosité est fine, et plus le processus est lent (cf. équation de Poiseuille, p.10).

1.4 Les risques d'un dessalement

Plusieurs cas de dessalement d'un bâtiment se sont soldés par un échec par manque de connaissance sur les processus de transfert entre différents milieux poreux, c'est-à-dire les compresses et les supports, qui sont souvent composites (pierres, mortiers, ...)²⁷.

Un dessalement inadapté peut provoquer la réapparition de sels (par apport d'eau et donc réactivation des sels) et/ou la concentration de sels en surface du matériau (par un séchage inadapté ou l'application d'une compresse dont la porosité n'aurait pas été adaptée au support)²⁸. Il peut aussi provoquer l'apparition de tous nouveaux sels : soit par élimination préférentielle de certains ions et concentration d'ions résiduels, soit par l'apport de nouveaux ions provenant de matériaux de dessalement « échangeurs d'ions »²⁹.

C'est pourquoi il est primordial de connaître les matériaux constituant la mosaïque, l'histoire du site et les méthodes de conservation préventive mises en place, les ions en présence ainsi que les matériaux utilisés pour le dessalement eux-mêmes. Ces informations permettront d'étudier 4 points nécessaires à la décision d'un dessalement :

- « Déterminer la nature et la distribution des sels,
 - Observer la nature et l'évolution des détériorations,
 - Déterminer la situation microclimatique et son évolution,
 - Faire la relation entre les événements de cristallisation observés et les événements du microclimat³⁰. »

Seulement après avoir réuni toutes ces informations, une proposition peut être élaborée. Nous allons donc débuter cette recherche par l'histoire et la géographie du site, la composition des mosaïques, et les mesures de conservation préventive installées.

³⁰ Ministère de la culture et de la communication, 2003, p.42.

²⁶ Si une compresse est plus macroporeuse que le substrat à dessaler, le processus majoritaire de transfert sera la diffusion, qui est un processus de transfert très peu efficace et très lent.

²⁷ Communication orale de Bénédicte Rousset, docteur en pétrophysique, le 16 juin 2015, au CSC Sàrl, Route de Baumont 3, 1700 Fribourg.

²⁸ Brajer et Larsen, 2013, p.14-20.

²⁹ Communication orale de Bénédicte Rousset et Christine Bläuer, docteur en minéralogie, le 16 juin 2015, au CSC Sàrl, Route de Baumont 3, 1700 Fribourg.

2. Présentation des mosaïques

2.1 Présentation du site

Le site d'Orbe-Boscéaz, s'étend à 2,5 kilomètres de la ville d'Orbe³¹. Son histoire se déroule sur deux millénaires, sa construction débutant un demi-siècle av. J.-C. et son étude étant, en cette année 2015, toujours en cours. Les chapitres ci-après offrent une introduction sur son histoire, son implantation géographique, les mosaïques concernées par cette recherche, les restaurations antérieures et les mesures de conservation préventive qui sont actuellement mises en œuvre pour leur préservation à long terme et leur exposition au public.

2.1.1 Environnement géographique et climatique

Le site d'Orbe-Boscéaz se situe à 480m d'altitude³². Aménagé entre la plaine de l'Orbe et les montagnes jurassiennes, le site est disposé sur un sol pentu constitué « *de graviers et argiles morainiques, de colluvions superficielles, relativement bien drainées naturellement³³.* »

Une nappe phréatique s'étend en amont du site. Ce dernier est en moyenne exposé à 80 jours de gel par année et à des précipitations annuelles de 1000mm d'eau, principalement entre avril et octobre.

Une route cantonale traversait le site jusqu'en 1986 et a été déviée en amont de celui-ci. Une sortie d'autoroute se situe au sud-est de l'infrastructure. Finalement, le site est entouré de terrains agricoles (maïs, luzerne, pommes de terre, etc.)³⁴, parfois utilisés comme pâturages pour les bovins (cf. Annexes fig.1-4, p.4).

Figure 1 : Reconstitution hypothétique du palais d'Orbe-Boscéaz. ©IASA, 2004.

- ³¹ Flutsch et al., 1997, p.17.
- 32 Weidmann, 1987, p.9.
- ³³ Ibidem.
- ³⁴ Ibidem.

2.1.2 Histoire du site

Cette infrastructure romaine, constituée d'une quinzaine de bâtiments, est une villa monumentale agrémentée de locaux qui servaient à entretenir les terres alentour (hangar, grenier, écuries, ateliers, etc.)³⁵. L'évolution de l'ensemble architectural s'étend sur plus de 400 ans : Les premiers bâtiments érigés datent de la fin du 1^{er} siècle av. J.-C. et l'ensemble des mosaïques date de la première moitié du III^{ème} siècle ap. J-C. Toutes les mosaïques font partie de la villa du propriétaire, qui s'étendait sur 200m de long et était composée d'au moins deux péristyles³⁶ (cf. fig.1, p.15).

Le site est abandonné à la fin du III^{ème} siècle par ses propriétaires, pour cause d'incursions alamanes et troubles politiques. Le bâtiment principal est ensuite partiellement occupé du début du IV^{ème} siècle jusqu'au V^{ème} siècle. Finalement, il est abandonné, et utilisé comme source de matériaux de constructions pour de nouveaux édifices³⁷.

C'est en 1736 qu'est découvert le site d'Orbe-Boscéaz, lors de la construction d'une route traversant la résidence principale du site. Les mosaïques sont partiellement détruites par les travaux routiers.

En 1841 puis 1862, trois nouvelles mosaïques sont mises au jour grâce à divers travaux routiers et viticoles. C'est alors que « *l'Etat et la commune d'Orbe décident de [les] conserver in situ, en déplaçant le tracé routier et en mettant en place tout d'abord des protections provisoires, puis dans un délai d'un an environ, en construisant des bâtiments de protection fermés³⁸. » Les pavillons sont aménagés pour accueillir des visiteurs. Moins de 20 ans après leur mise au jour³⁹ des altérations liées à l'humidité apparaissent : des drainages sont installés autour de chaque pavillon⁴⁰. Au XXème siècle, l'automobile et les tracteurs agricoles augmentent les vibrations des sols ; l'emploi de pesticides et de fertilisants ainsi que le salage hivernal augmentent la présence de sels dans les sols⁴¹.*

En 1976, des cartographies aériennes permettent de connaître l'étendue totale du site, entouré d'une clôture quadrangulaire de 400m de côté⁴². La découverte de l'ampleur du site permet de lancer de nouvelles mesures pour sa préservation, notamment : l'acquisition de l'ensemble du terrain par le canton et la commune, la limitation de l'exploitation agricole à proximité du site et le déplacement de la route et de l'autoroute⁴³. De plus, un programme de fouilles méthodiques est lancé en 1986, et les éléments

- ³⁵ Flutsch *et al.*, 1997, p.21.
- ³⁶ Weidmann, 1987, p.10.
- ³⁷ Flutsch *et al.*, 1997, p.35.
- ³⁸ Weidmann, 1987, p.10.
- ³⁹ Weidmann *et al.*, 2003, p.169.
- ⁴⁰ Weidmann, 1987, p.10-11.
- ⁴¹ Weidmann, 1987, p.13.
- ⁴² Weidmann, 1987, p.10.
- 43 Weidmann, 1987, p.14-15.

découverts sont progressivement réenfouis après documentation⁴⁴. La mosaïque n°9 dite « *d'Achille à Skyros* » est la dernière découverte en 1993⁴⁵. Cette ultime trouvaille incite les restaurateurs à étudier l'environnement des mosaïques et à procéder à une série d'études et d'expérimentations systématiques. Cette démarche a pour objectif d'obtenir un constat d'état global du site et un diagnostic des processus d'altérations en cours⁴⁶ dont le bilan doit servir à appliquer une procédure de conservation préventive adaptée à chacune des mosaïques, en fonction des processus d'altérations spécifiques à chaque cas.

Figure 2 : Plan du pavillon et de la répartition des mosaïques. Carré rouge à gauche = Mosaïque n°8, Carré rouge de droite = Mosaïque n°7. ©Etat de Vaud - Aventicum, 2013.

2.1.3 Identification des mosaïques

Deux mosaïques sont étudiées dans le cadre de ce mémoire : la mosaïque n°7, dite « aux carrés et losanges », et la mosaïque n°8, dite « aux divinités » (cf. fig.2, p.17).

Les mosaïques antiques sont composées de 4 strates : A même le sol une première couche constituée de grosses pierres sert à niveler la surface et stabiliser le sol⁴⁷. Elle s'appelle le *statumen* (cf. fig.3, p.18, point 1). Une deuxième couche, le *rudus*, composé d'un mortier de chaux « *bâtard*⁴⁸» mélangé à de la

- ⁴⁴ Weidmann et Girardet, 2005, p.359.
- ⁴⁵ Weidmann, 1997, p.169.
- ⁴⁶ Weidmann *et al.*, 2003, p. 169.
- ⁴⁷ Alberti *et al*., 2011, p.2.
- ⁴⁸ Lavagne, 1987, p.29.

terre cuite et à des pierres de plus petites dimensions, fait office de couche préparatoire⁴⁹ (cf. fig.3, p.18, point 2).

Ensuite, un mortier plus fin de couleur rose (cf. fig.3, p.18, point 3), le nucleus, de 1.5 à 2cm d'épaisseur, sert de troisième couche préparatoire. Cette couche est plus fine et plus homogène que le rudus ; elle est composée d' « un mortier de chaux et de briques ou de tuileaux plus ou moins finement broyés⁵⁰ ». Finalement, la dernière couche de mortier est le lit de pose (cf. fig.3, p.18, point 4), une couche blanc-beige de 0.1 à 0.5cm très riche en chaux et très fine dans laquelle ont

frais⁵¹. La mosaïque à tesselles apparaît durant la

été insérées les tesselles lorsqu'il était encore Figure 3 : Stratigraphie d'une mosaïque. © Alberti et al., 2011, p.2.

période hellénistique, au III^{ème} siècle av. J.-C. : on parle alors d'opus tessellatum⁵².

Les mosaïques étudiées sont polychromes, et présentent de nombreuses teintes : noir, blanc, gris, beige, jaune, brun, rose, rouge, vert et bleu (cf. fig.3, p.18, point 5 et fig.4-5, p.19-21).

Les tesselles noires, beige-gris, jaunes, brunes, roses et rouges sont des calcaires⁵³ et forment « *des* pyramides à base rectangulaire, tronquées et renversées⁵⁴. » Les tesselles de couleurs spécifiques comme le bleu ou le vert sont en pâte de verre⁵⁵. Les dimensions des tesselles sont de 5 à 12mm de hauteur pour 7 à 13mm de côté⁵⁶.

2.1.3.1 Mosaïque n°8, dite « aux divinités »

La mosaïgue n°8 est localisée dans le pavillon IV et conservée in situ. Elle forme un carré de 4m30 de côté⁵⁷. C'est un *opus tessellatum polychrome géométrique et figuré*⁵⁸(cf. fig.4, p.19).

- 49 Alberti *et al.*, 2011, p.2.
- ⁵⁰ Lavagne, 1987, p.29.
- ⁵¹ Alberti *et al.*, 2011, p.2.
- ⁵² Bruneau, 1987, p.59 et 71.
- ⁵³ Félix, 1996, p.14.
- ⁵⁴ Félix, 1996, p.11.
- ⁵⁵ Bruneau, 1976, p.89-90.
- ⁵⁶ Félix, 1996, p.11.
- ⁵⁷ Le Roy, 1868, p.9.
- ⁵⁸ Alberti *et al.*, 2011, p.7.

En bordure de la mosaïque, quatre scènes de chasse servent d'ornements : la scène du bas représente un chasseur, deux limiers, un sanglier et un bouledogue ; la scène du côté droit représente un chien, un cerf, une panthère et deux biches ; la scène du dessus figure un ours, un buffle, un lion et deux chevaux ; les animaux de la scène du côté gauche ne sont pas identifiables en raison de la perte de tesselles. Dans deux des angles de la mosaïque, deux portraits féminins sont encore intacts.

Au centre de la mosaïque, treize médaillons octogonaux d'un

Figure 4 : Mosaïque n°8 dite « aux divinités ». ©Etat de Vaud – Aventicum, 2013.

diamètre de 42cm sont ornés de bordures noires et reliés par des « *cordes torses⁵⁹* ». L'espace séparant les médaillons et les cordes est rempli de carrés contenant chacun un triangle noir. Tous les triangles d'une même ligne sont disposés dans la même direction. Ainsi, les cordes torses et les triangles se rejoignent et forment une croix.

Les médaillons sont répartis sur 5 lignes, chacune présentant en alternance deux ou trois médaillons. Le médaillon central représente Vénus, déesse de l'amour, portée par des amours ailés nus. Autour d'elle, 8 médaillons représentent le jour et la nuit ainsi que les 7 jours de la semaine⁶⁰ :

Au-dessus à gauche, Apollon debout sur un char à deux-roues, représente le soleil et le premier jour. Au-dessus à droite, Diane debout sur son char est la déesse de la lune et de la nuit, symbolise le deuxième jour. A droite de Vénus, sur la même ligne, Mars porté sur son trône par deux jeunes hommes nus, représente le troisième jour. En-dessous à droite, Mercure sur un bélier représente le quatrième jour. En-dessous à gauche, Jupiter assis sur son aigle est le roi des oiseaux et des cieux, symbolise le cinquième jour. Vénus symbolise elle-même le sixième jour. A gauche de Vénus, sur la même ligne, Saturne assis et porté par deux jeunes hommes ailés et nus, incarne le septième jour.

⁵⁹ Le Roy, 1868, p.10.

⁶⁰ Le Roy, 1868, p.17.

Au-dessus de Vénus, Ganymède est enlevé par l'aigle de Jupiter. En-dessous de Vénus, Narcisse s'admire dans l'onde⁶¹.

Finalement, les quatre médaillons situés aux extrémités de la mosaïque représentent les puissances marines, sous les traits de faunes et de divinités marines enlevant des nymphes⁶².

La présence iconographique de la déesse de l'amour et de la beauté, associée aux divinités marines et régnant sur le jour et la nuit, expliquerait la fonction de cette salle en tant que salle de bain⁶³. En effet, l'hygiène est associée aux soins du corps et à la beauté, notamment par des bains parfumés appelés « *bains de beautés⁶⁴* » dont la composition est connue.

2.1.3.2 Mosaïque n°7, dite « aux carrés et losanges »

La mosaïque n°7 est localisée dans le pavillon III, à côté la mosaïque n°6. Elle est conservée *in situ*. Les deux mosaïques sont séparées par une cloison de pierre abattue, fondation du bâtiment d'origine. La mosaïque mesure 3m de long pour 2m30 de large⁶⁵ (cf. fig.5, p.21). Son décor géométrique tricolore et composé de tesselles noires, blanches et jaunes, est aussi appelé *opus tessellatum polychrome géométrique⁶⁶*. Le motif est réparti en 5 lignes de losanges alternativement jaunes et noirs entrecoupées par 5 lignes de carrés blancs. Chaque losange contient un motif végétal, en forme de cœur terminée par de longues queues arrondies⁶⁷. Dans chaque losange noir, la feuille est jaune, et dans chaque losange jaune, la feuille est noire.

Les carrés blancs sont composés de motifs géométriques (carrés, triangles, croix, points) noirs, jaunes et blancs. Dans une même ligne, chaque motif est unique. Les motifs de la deuxième ligne sont reproduits sur la quatrième ligne, mais dans l'ordre opposé. Aux extrémités de la mosaïque, le carré final est remplacé par un triangle blanc contenant trois petits triangles noirs. Le bord de la mosaïque est orné d'une bordure blanche, séparée en son centre par une ligne noire. Une ligne de tesselles alternativement noires et blanches délimite la bordure des motifs centraux. L'ensemble des motifs, leur répartition et l'arrangement des couleurs apportent une impression de tridimensionnalité au motif, qui pourrait s'apparenter à un « motif des cubes en trompe-l'œil⁶⁸ ».

La mosaïque est entourée de deux mortiers de restauration : un mortier gris-beige, reliant la mosaïque aux murs et à la cloison et un mortier gris recouvrant le côté lacunaire de la mosaïque.

- ⁶² Le Roy, 1868, p.15-16 et 44.
- ⁶³ Le Roy, 1868, p.45.
- ⁶⁴ Le Roy, 1868, p.47.
- 65 Le Roy, 1868, p.8.
- 66 Alberti *et al.*, 2011, p.5.
- ⁶⁷ Le Roy, 1868, p.8.
- 68 Bruneau, 1987, p.74.

⁶¹ Le Roy, 1868, p.12-15.

L'absence de représentation symbolique ou figurative associée à une activité spécifique (le bain, le repas, le repos, etc.) pourrait indiquer que cette salle faisait plutôt office d'antichambre⁶⁹.

Figure 5 : Mosaïque n°7 dite « aux carrés et losanges ». ©Etat de Vaud – Aventicum, 2013.

2.1.4 Restaurations antérieures

Depuis leur découverte, ces mosaïques ont subi des interventions de restauration diverses et variées ajoutant une panoplie de matériaux considérables aux constituants d'origines : ponçage et lustrage des pavements à la cire puis au vernis vinylique ; réintégration de tesselles à l'aide de chaux, gypse, colle ou silicate ; remplacements de tesselles par des pierres calcaires « plus solides » ; consolidations des bordures des mosaïques au ciment ; nettoyages des tessellatum au savon, à la lessive, aux solvants organiques, à l'acide, aux détergents à la paille de fer ; rencollage au ciment portland, ciment dentaire, colles synthétiques, etc⁷⁰.

Toutes les restaurations réalisées ne sont pas visibles et n'ont pas toutes été documentées ou de façon imprécise. Certains documents ont été égarés au fil des 150 dernières années et rares sont les restaurations dont les emplacements ont été signalés⁷¹. Cependant, deux « profils » de restaurations se distinguent: les interventions réalisées au cours du XIX^{ème} siècle par des artisans de la maçonnerie et de la pierre, et les restaurations de la première moitié du 20^{ème} siècle, accomplies par des archéologues et restaurateurs⁷².

- 69 Flutsch et al., 1997, p.42.
- ⁷⁰ Weidmann, 1987, p.11-13.
- ⁷¹ Weidmann, 2007, p.47.
- ⁷² Weidmann, 2007, p.46.

2.1.5 Mesures de conservation préventive actuelles

Depuis 1976⁷³ une démarche de documentation, d'étude et de compréhension des altérations en cours est lancée et des mesures de conservation préventive adaptées à chaque mosaïque sont développées. L'efficience de ces mesures est régulièrement confirmée ou infirmée par un suivi régulier de l'évolution des conditions de conservation de chacune des mosaïques.

2.1.5.1 Environnement extérieur

Les terrains agricoles environnants ne sont plus labourés ni cultivés depuis la fin des années 80 afin de limiter les vibrations provoquées par les tracteurs et les apports en sels⁷⁴.

Un premier drainage en amont des mosaïques, étendu sur la quasi-totalité de la longueur du site, limite l'apport d'eau dans les sols par la nappe phréatique. Une deuxième série de drainages entoure 3 côtés des pavillons n° I, II et III (est-nord-ouest). Le pavillon n° IV est entouré d'une tranchée sur les 3 mêmes côtés.

2.1.5.2 Isolation thermique

Les murs des abris ont une épaisseur de 60cm, mais atténuent les variations climatiques extérieures en les divisant d'un facteur 4 à 5⁷⁵, ce qui représente une isolation faible. Plusieurs améliorations de l'isolation des bâtiments ont été mises en œuvre : calfeutrage des portes et ouvertures, suppression des ventilations naturelles, isolation thermique des plafonds et des sous-toitures, installation de vitrages isolants et fermeture permanente des fenêtres, installation de claustra et jalousies pour éviter l'échauffement de l'intérieur par insolation directe⁷⁶. Un système d'éclairage automatique s'allume lors de l'ouverture de la porte et s'éteint après 15 minutes s'il ne détecte pas de mouvements.

2.1.5.3 Climatisations

Des tranchées ont été creusées sur un côté des mosaïques n°6 et 7 (sud) et sur 3 côtés de la mosaïque n°8 (est-sud-ouest) pour favoriser l'assèchement des mosaïques et limiter les remontées d'eau capillaire⁷⁷. Les tranchées sont recouvertes de panneaux en bois. Une ventilation « intelligente » a été installée dans les pavillons n° III et IV pour conserver une humidité relative élevée dans les locaux (entre 80 et 95% : cf. Annexes fig.9-10, p.7) tout en diminuant l'humidité apportée par le terrain par le passage de l'air ventilé dans la tranchée ouverte entourant les mosaïques (cf. fig.6, p.23). Le climat est régulé par un processeur industriel qui prend en compte les climats extérieur, intérieur et celui de la

⁷³ Weidmann, 2007, p.47.

⁷⁴ Weidmann, 1987, p.15.

⁷⁵ Weidmann *et al.*, 2003, p.172.

⁷⁶ Weidmann et Girardet, 2005, p.360-361.

⁷⁷ Weidmann *et al.*, 2003, p.183.

tranchée. L'évolution du climat est suivie par un processeur industriel, relié à des capteurs, qui enregistre une mesure toutes les trente minutes 24h/24, 365 jours par an⁷⁸ (cf. Annexes fig.5-7, p.11). Lorsque les portes des bâtiments restent ouvertes plus de 5 minutes, un message enregistré dans chaque langue nationale demande au visiteur de fermer la porte pour des raisons climatiques⁷⁹.

3. Coupe schématique et situation de la mosaïque no 7 de Boscéaz, avec installation de ventilation. (1) mur gallo-romain, (2) maçonnerie moderne, (3) mosaïque *in situ*, fragmentaire, (4) tranchée drainante, (5) espace de visite, (6) panneau de fermeture, (7) isolation, (8) jalousies - double vitrage, (9) ventilateurs, (10) capteurs humidité – température, (11) humidité capillaire, (12) mouvements d'air humide.

2.1.5.4 Sécurité

Pour la sécurité des mosaïques, une alarme infrarouge protège l'enceinte de chaque mosaïque, pour éviter tout acte de vandalisme et/ou de destruction des mosaïques. Des barrières en aluminium et en Plexiglas[®] séparent l'espace visiteurs des mosaïques⁸⁰. Une deuxième alarme protège l'intégralité du bâtiment⁸¹. En plus des alarmes, les portes sont verrouillées en dehors des heures d'ouverture. Un surveillant est présent sur le site durant les heures d'ouverture.

⁷⁸ Weidmann *et al.*, 2008, p.6-8.

⁷⁹ Weidmann et Girardet, 2005, p.361.

⁸⁰ Weidmann, 1987, p.16.

⁸¹ 9h-12h et 13h30-17h du mardi au dimanche.

2.2 Problématique des sels sur le site

Nous allons maintenant inventorier les altérations liées aux sels et expliquer leur mécanisme.

2.2.1 Constat d'état

Moins de 20 ans après leur découverte, des décollements du tessellatum, des cloques, des efflorescences salines et des altérations de la pierre sont observées sur les mosaïques n°6, 7 et 8⁸². Sur la globalité du site, les tesselles claires présentent quelques microfissures occasionnelles, alors que les tesselles sombres arborent plusieurs types d'altérations (cf. fig.7, p.24) : pulvérulences, microfissures et fissures, usure, augmentation de la porosité et éclaircissement de leur teinte⁸³. Les joints entre les tesselles ont partiellement disparus⁸⁴.

Des décollements et soulèvements, sous forme de cloques, ainsi que des affaissements ont été observés sur la mosaïque n°8. Ils sont aussi présents, mais à moindre échelle, sur la mosaïque n°7.

Des lacunes sont observées dans les bordures des mosaïques (cf. fig.8 et 10, p.25-26).

Finalement, des taches sombres et brillantes à proximité des murs (cf. fig.8-10, p.25-26) sont présentes sur les deux mosaïques tout au long de l'année. Sur la mosaïques n°8, la tache d'humidité est localisée sur la mosaïque elle-même. Sur la mosaïque n°7, la tache d'humidité se répand principalement sur le mortier de restauration, mais s'étend parfois jusque sur la bordure en tesselles de la mosaïque.

La dimension des taches varie au fil des saisons : elles sont presque invisibles en hiver, réapparaissent au printemps et augmentent en été. Toutefois, leurs dimensions ne semblent pas en augmentation depuis les 3 dernières années⁸⁵.

On constate que les altérations de la mosaïque n°8 sont toutes globalement situées vers le côté gauche de la mosaïque, là où elle est en contact direct avec le mur (cf. fig.8, p.25).

Figure 7 : Coupe mince au travers d'un échantillon de tesselles. Fissuration des calcaires sombres altrérés et résidus de jointoyage. Weidmann et al., 2003, p.179.

- 82 Weidmann et al., 2003, p.169.
- 83 Weidmann et al., 2003, p.170.
- ⁸⁴ Weidmann *et al.*, 2003, p.171.

⁸⁵ Constatation établie entre l'observation des altérations en hiver 2015 et les documents photographiques de périodes antérieures. La présence de ces taches n'a jamais été soulevée jusqu'en 2012 comme une source de sels.

Figure 8 : Mosaïque n°8 avec : en bleu clair les détachements déduits par control acoustique, en rouge les injections de mortiers qui ont été faites dans les détachements et en bleu foncé l'emplacement approximatif de la tache d'humidité (car varie en dimensions). Au-dessus de cette zone, on observe la présence d'une lacune. ©Etat de Vaud, Aventicum, 2013.

Figure 9 : Emplacement de la tache d'humidité de la mosaïque n°8 (partiellement délimitée par des flèches bleues). ©HE-Arc CR, 2015.

Figure 10 : Emplacement de la tache d'humidité de la mosaïque n°7 (partiellement délimitée par des flèches bleues). ©Etat de Vaud, Aventicum, 2013.

2.2.1.1 Description des cristaux

<u>Mosaïque 8 (tesselles et mortier de pose)</u> : Des cristaux aciculaires blancs, appelés *whiskers*⁸⁶, croissent perpendiculairement à la surface de la mosaïque où ils forment des barbules (cf. fig.11 et 13, p.27)⁸⁷. Les cristaux prennent naissance majoritairement dans les joints (cf. fig.13, p.27).

Mosaïque n°7 (mortier de restauration) : une croûte brun-clair au centre de la tache (cf. fig.12, p.27) et des efflorescences blanches éparses situées en bordure (cf. fig.14, p.27) sont observées en hiver 2015.

Ces efflorescences n'ont jusqu'à maintenant été observées qu'en hiver et semblent disparaître au printemps.

⁸⁶ Terme anglais qui signifie « vibrisse » en français. Utilisé pour définir ces cristaux car leur forme ressemble à des moustaches de chat. Rodriguez-Navarro et Doehne, 1999, p. 200.

⁸⁷ Terrapon, 2013, p.5.

Figure 11 : Whiskers observés en surface de la mosaïque n°8 (dans le carré vert). ©HE-Arc CR, 2015.

Figure 12 : Voile blanc observé sur le mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015.

Figure 13 : Whiskers observés en surface de la mosaïque n°8. ©Etat de Vaud, Aventicum, 2013.

Figure 14 : Croûte observée sur le mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015.

2.2.2 Diagnostic

Les efflorescences prélevées sur la mosaïque n°7 en 2005 sont analysées par chromatographie ionique (CI). Les analyses mettent en évidence la présence de sulfate de calcium et des traces de sodium, de nitrate et de chlorure (détectés, mais pas quantifiés)⁸⁸. En 2013, des efflorescences sont prélevées sur la mosaïque n°8⁸⁹. Les analyses par microscopie, microchimie et spectroscopie infrarouge à transformée de Fourier (FTIR) appliquées sur les efflorescences ont permis d'identifier des sulfates de sodium, des sulfates de calcium, du carbonate de sodium et des traces de nitrate⁹⁰.

- 88 Girardet, 2005, p.1.
- 89 Bläuer, 2013.
- 90 Bläuer, 2013 p.5.

Les sels alcalins, c'est-à-dire les carbonates identifiés dans les deux analyses, sont spécifiques aux matériaux de restauration tels que les ciments et mortiers de chaux hydraulique⁹¹. Cette interprétation correspond bien à la situation étudiée : la mosaïque n°8 présente de nombreuses zones restaurées (cf. fig.8, p.25, lacune) et le mortier entourant la mosaïque n°7 est un mortier de restauration supposé « à base de chaux » mais dont la composition complète est inconnue.

sulfate sodium Le de sous forme déshydratée, la thénardite (Na₂SO₄), se solubilise et reprécipite sous forme de mirabilite (Na₂SO₄·10H₂O) à une HR de 60% à 0°C ou à une HR de 78% à 25°C (cf. fig.15, p.28)⁹². Lorsque HR dépasse 78% pour 0°C ou 82% pour 25°C, la mirabilite reste sous forme cristalline ou forme une solution supersaturée (cf. fig.15, p.28). Les cycles d'hydratation et de solubilisation du sel, qu'il soit sous forme de mirabilite ou de thénardite modifient systématiquement le volume occupé par le sel en fonction du climat: le

Figure 15 : Graphique des stades d'hydratation et de solubilité de la thénardite en fonction de HR et T. ©Tsui et al., *2003, p.110.*

volume de la thénardite, lors de sa reprécipitation en mirabilite, augmente de 314% par rapport au volume de la thénardite⁹³. Ces fluctuations de volume et donc de pression sur le mortier fatiguent la matière. Si le sel n'a pas suffisamment de place pour croître dans la porosité du matériau qui le contient, la cristallisation du sel et son hydratation induisent des pressions sur le matériau : la pression de cristallisation et la pression d'hydratation⁹⁴.

Le sulfate de calcium dihydraté est un sel peu soluble. Ce genre de sels peut provoquer des altérations similaires à celles observées sur les mosaïques, notamment les croûtes observées sur le mortier de restauration de la mosaïque n°7⁹⁵.

Sur les mosaïques d'Orbe-Boscéaz, le sulfate de sodium passe du stade de mirabilite cristallisée en hiver à une solution de sulfate de sodium super-saturée en printemps : les changements de volume et de pression se déroulent annuellement.

⁹¹ Arnold, 1991, p.105-108 et Bläuer et Rousset, 2014, p.307.

⁹² Tsui et al., 2003, p.110.

⁹³ Tsui *et al.*, 2003, p.109.

⁹⁴ Cf. chapitre 1.2.4 « Hydratation et cristallisation des sels », p.12.

⁹⁵ Charola, 2000, p.336-337.

Selon le graphique (cf. fig.15, p.28), la situation inverse devrait être constatée : théoriquement on s'attendrait à voir le sulfate de sodium cristalliser en été et se dissoudre en hiver.

Il est possible d'expliquer cet illogisme par le système de climatisation mis en place dans le cadre de la conservation préventive :

En hiver, l'installation climatique sert à humidifier la surface des mosaïques et les locaux par un transfert d'air entre les tranchées (en sous-sol, plus humide) et l'intérieur du bâtiment, et la chaleur provient du sol (cf. fig.16, p.29). L'air pulsé de bas en haut provient donc du sous-sol et contient plus d'humidité. Plus l'air est chaud, plus la quantité de vapeur d'eau qu'il peut contenir est élevée et plus il est léger. L'air pulsé étant plus chaud, il est donc plus humide et plus léger que l'air présent dans le bâtiment. Par suite, il monte depuis le sol. Quand il approche des murs non isolés et froids⁹⁶, l'air intérieur se refroidit et à proximité immédiate des murs, il atteint son *point de rosée** : en conséquence, il se trouve localement saturé en vapeur d'eau. La vapeur d'eau en surplus se condense et l'eau liquide formée se dépose sur les murs⁹⁷. Ainsi, l'air s'assèche. L'air froid, plus dense et plus sec, redescend au niveau du sol : un phénomène de *convection naturelle* se créé⁹⁸. Lorsqu'il entre en contact avec le sol chauffé, l'air se réchauffe et se charge à nouveau en vapeur d'eau pour s'équilibrer avec son environnement, puis il remonte (cf. fig.16, p.29). Ainsi, en hiver, la mosaïque s'assèche constamment pour tenter de s'équilibrer avec l'humidité relative et la température du local. Mais comme les murs sont toujours plus froids que l'air ambiant des locaux, l'eau condense sur sa surface. Il s'en suit que les matériaux des

mosaïques n'atteignent jamais l'équilibre ni thermique, ni hydrique. Par conséquent, en hiver, même si l'air ambiant est globalement humide, les matériaux constituant la surface de la mosaïque se déshydratent et les sels peuvent cristalliser.

L'eau condensée sur les murs forme des stalactites de glace lorsque la température descend en-dessous de 0°C. Parfois, des coulures d'eau descendent jusqu'au sol, mais cela n'a pas encore été constaté sur le seul

Figure 16 : Schéma des mouvements d'air dans les pavillons en hiver. ©HE-Arc CR, 2015.

⁹⁶ Terrapon, 2013, p.10.

⁹⁷ Stefanaggi, 2001, p.15-16.

⁹⁸ Cf. chapitre 1.1.4 « Transfert de chaleur par convection thermique », p.10 et annexes fig.8, p.6.

mur en contact avec la mosaïque n°8⁹⁹. Ce phénomène de coulures n'a pas été encore examiné sur la mosaïque n°7.

2.2.3 Pronostic

La présence d'ions en solution dans la porosité des matériaux a pour conséquence la cristallisation des sels au gré des variations climatiques, notamment sous forme de sels hydratés. Lorsque l'humidité relative de l'air ambient et de l'air contenu dans la porosité est élevée, les sels contenus dans et/ou sur les matériaux de la mosaïque s'hydratent ou se solubilisent ; lorsque ces humidités relatives baissent, les sels se déshydratent ou cristallisent.

Sur les mosaïques, ces cycles de cristallisation et de solubilisation répétés provoquent à long terme la desquamation et dislocation des tesselles, et rendent les mortiers (lit de pose, nucleus et/ou rudus, mortier de restauration) pulvérulent. La cristallisation des sels peut aussi provoquer un clivage entre différentes couches de matériaux, si les sels s'accumulent entre deux couches de matière de porosités distinctes¹⁰⁰. De plus, s'ils sont concentrés dans une couche hétérogène comme le tessellatum¹⁰¹ et que l'eau contenue dans le substrat s'évapore, ils migrent dans le matériau dont la porosité est la plus fine et vont y précipiter préférentiellement (cf. équation de Laplace, p.10)¹⁰². Ces altérations provoquent la perte de cohésion et de matière des mortiers et des tesselles, la séparation des différentes couches de la lisibilité du décor.

Il est difficile d'attribuer une forme d'altération à un type de sel précis, surtout lorsque la quantité des différents ions présents est inconnue. En effet, les modèles théoriques de processus d'altérations dus aux sels sont généralement étudiés sur un voire deux sels purs, et non sur des mélanges. Ces altérations sont aussi probablement la conséquence de plusieurs processus d'altération, une combinaison entre les sels, les variations thermiques (dilatations) et hydriques (assèchement/hydratation).

Aucune altération visible due au gel n'a été observée sur les mosaïques, il semblerait donc que l'aspect mouillé des taches humides est dû à la présence des sels, à la fois lorsqu'ils sont en solution et lorsqu'ils s'hydratent¹⁰³ et de la ventilation inadaptée des locaux. Il n'y aurait donc pas d'apport externe d'eau (sauf en de très rares occasions). Le processus d'altération forme un cycle fermé, et n'a pas besoin d'apport externe en eau pour s'entretenir.

⁹⁹ Information obtenue oralement auprès de Noé Terrapon, responsable du laboratoire de restauration des Sites et Musées romains d'Avenches, Rue du Pavé 4, à Avenches, le 6 juillet 2015.

¹⁰⁰ Alberti *et al.*, 2011, p.35 et 37.

¹⁰¹ Couche visible de la mosaïque, c'est-à-dire le lit de pose et les tesselles. Alberti *et al.*, 2011, p.2.

¹⁰² Sawdy, 2008, p.7.

¹⁰³ Le taux d'humidité relative de l'air à l'intérieur du bâtiment et la teneur en eau de la mosaïque étant trop élevés pour permettre la précipitation des sels.

Une analyse des mortiers et des tesselles étofferait les informations déjà connues sur la teneur en sel des mosaïques. Pour cela, des échantillons sont prélevés dans les deux mosaïques et analysés par chromatographie ionique (CI) et spectrométrie d'émission optique avec plasma à couplage inductif (ICP-OES).

3. Analyse des espèces ioniques

3.1 Echantillonnage

Afin d'étudier le contenu en sels des mosaïques sans détruire ces dernières il a été décidé de prélever : dans la mosaïque n°8 (tesselles et mortier), et dans le mortier de restauration de la mosaïque n°7, au centre des taches humides. Ces mortiers sont prélevés par perçage vertical sous forme de poudres dont sont extraites, analysées et quantifiées les espèces solubles à l'eau. Sur chaque mosaïque, les prélèvements sont effectués en deux points distincts (cf. fig. 17-19, p.32).

Le contenu ionique des tesselles de la mosaïque n°8 sera aussi analysé par CI et ICP après extraction à l'eau sans destruction des tesselles. La quantité de matière nécessaire a été évaluée à environ 2g de matière par échantillon¹⁰⁴.

Prélèvements	Matériau	Profondeur (cm)	Terme associé
M8_TPA et M8_TPB	Tesselle	0	Surface
M8_PA1 et M8_PB1	Lit de pose	0 - 1,3	Surface
M8_PA2 et M8_PB2	Nucleus	1,3 - 2,6	Centre
M8_PA3 et M8_PB3	Nucleus / Rudus	2,6 - 3,9	Profondeur
M7_PA1 et M7_PB1	Mortier de restauration	0 - 2	Surface
M7_PA2 et M7_PB2	Mortier de restauration	2 - 4	Centre
M7 PA3 et M7 PB3	Mortier de restauration	4 - 6	Profondeur

Tableau 1 : Récapitulation des répartitions en profondeur de chaque échantillon. ©HE-Arc CR, 2015.

3.1.1 Prélèvement dans la mosaïque n°8 (tesselles et mortier)

L'emplacement des prélèvements est choisi en fonction de l'emplacement de tesselles en bon état et peu adhérentes, limitant la destruction de matière possible. La tesselle, dont le contenu en sels sera par la suite analysé, est photographiée puis retirée et conservée dans un Minigrip[®] avec inscription de son emplacement. Le mortier situé au-dessous est ensuite perforé avec une tige diamantée. Une pompe équipée d'un filtre aspire les poussières du mortier broyé par la tige. La profondeur des prélèvements (1.3cm par pas de prélèvement) dépend de la longueur de la tige diamantée (4 cm). En effet, le diamètre

¹⁰⁴ Décision prise après discussion avec Noé Terrapon, responsable du laboratoire de restauration des sites et musées romains d'Avenches, Bénédicte Rousset, docteur en pétrophysique, et Christine Bläuer, docteur en minéralogie, en mars 2015, au CSC Sàrl, Route de Baumont 3, 1700 Fribourg.

d'un trou formé par le retrait d'une tesselle est inférieur au manche de la tige (env. 1 cm). Ainsi, les profondeurs accessibles sont limitées en fonction de la longueur de la tige. L'utilisation d'un outil plus large est compromise. Les pas de prélèvement du premier échantillon sont nommés M8_PA1 (0-1.3cm), M8_PA2 (1.3-2.6cm) et M8_PA3 (2.6-3.9cm), et la tesselle M8_T1. La tesselle du prélèvement PA est maintenue en place par du mortier de restauration : PA1 est donc composé dudit mortier. Les pas de prélèvement du deuxième échantillon sont nommés M8_PB1 (0-1.3cm), M8_PB2 (1.3-2.6cm), M8_PB3 (2.6-3.9cm) et la tesselle M8_T1. La tesselle du prélèvement PA est maintenue en place par du mortier de restauration : PA1 est donc composé dudit mortier. Les pas de prélèvement du deuxième échantillon sont nommés M8_PB1 (0-1.3cm), M8_PB2 (1.3-2.6cm), M8_PB3 (2.6-3.9cm) et la tesselle M8_T2 (cf. tableau 1, p.31).

3.1.2 Prélèvement dans la mosaïque n°7 (mortier de restauration)

Pour le mortier de restauration bordant la mosaïque, les points de prélèvements sont réalisés par carottage à l'aide d'une foreuse et récoltés dans des boîtes de polyéthylène. Les profondeurs des prélèvements, de 2 cm pour chaque pas, dépendent de la longueur de la tige de la foreuse (6 cm). Les pas de prélèvement du premier échantillon sont nommés M7_PA1 (0-2cm), M7_PA2 (2-4cm) et M7_PA3 (4-6cm. Les pas de prélèvement du deuxième échantillon sont nommés M7_PB1 (0-2cm), M7_PB2 (2-4cm), M8_PB3 (4-6cm) (cf. tableau 1, p.31).

Figure 17 : Prélèvement M8_PB. ©HE-Arc CR, 2015.

Figure 18 : Prélèvement M8_PA. ©HE-Arc CR, 2015.

Figure 19: Emplacement des prélèvements M7_PB (gauche) et M7_PA (droite). ©HE-Arc CR, 2015.

3.1.3 Conditionnement et préparation des échantillons

Les filtres et les boîtes en polyéthylène dans lesquelles ils sont stockés sont pesés avant et après le prélèvement pour connaître le poids de matière réellement prélevé. Ces poids, ainsi que les noms des prélèvements, sont notés sur chaque conteneur à l'aide d'un stylo indélébile. Les boîtes et les filtres sont finalement stockés dans une boîte hermétique sèche à température ambiante contenant du gel de silice (cf. Annexes fig.11-13, p.8).

Une fois arrivé au laboratoire, les échantillons sont retirés des filtres et des boîtes pour être transvasés dans des verres de montres. Ils sont à nouveau pesés avec le verre de montre avant d'être mis à sécher dans un four à 40°C durant 48h, puis stockés dans une boîte hermétique conditionnée au gel de silice durant environ 72h à température ambiante (cf. Annexes fig.14-15, p.8). Ils sont ensuite amenés au Laboratoire Dubois à la Chaux-de-Fonds pour être analysés.

Le procédé d'extraction des sels des mortiers suit la méthode décrite par Bläuer-Böhm¹⁰⁵. A 2g d'échantillon sont ajoutés 25ml d'eau déminéralisée pour les mortiers et 10ml pour les tesselles ; le mélange est agité durant 5 minutes. Ensuite, la suspension obtenue est aspirée à la seringue et transvasée dans un nouveau conteneur à travers un filtre.

3.2 Méthodes d'analyses (CI et ICP-OES)

Les sels solubles les plus souvent présents dans les monuments patrimoniaux sont formés des cations sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), magnésium (Mg²⁺) et ammonium (NH₄⁺), des anions chlorure (Cl⁻), sulfate (SO₄²⁻), nitrate (NO₃⁻), hydrogénocarbonate (HCO₃⁻) et carbonate (CO₃²⁻) et d'eau (H₂O) cristalline. Aucune méthode ne permet de détecter les ions HCO₃⁻ et CO₃²⁻ excepté la titration, qui nécessite une quantité de solution considérable¹⁰⁶. C'est pourquoi ce test ne sera pas réalisé. L'analyse par chromatographie ionique (CI) et spectrométrie d'émission optique avec plasma à couplage inductif (ICP-OES) permettent de détecter tous les autres ions recherchés. Les résultats de ces analyses, couplés avec les mesures de conductivité électrique (CE) et de *pH** effectuées sur les solutions salines préparées par extraction à l'eau, suffiront à déduire la présence ou l'absence des ions HCO₃⁻ et CO₃²⁻. L'ammonium est mesuré par titration à l'aide de l'appareil Spectroquant[®] Multy.

3.2.1 Chromatographie ionique (IC)

L'IC est une méthode permettant d'identifier des ions par échange d'électrolytes entre une matière solide et une solution contenant des *analytes**. La solution est éluée dans une colonne remplie d'une phase solide sous forme de microbille, appelée échangeur ionique¹⁰⁷.

¹⁰⁵ Bläuer-Böhm, 1996, p.1506-1507.

¹⁰⁶ Bläuer-Böhm, 2005, p.6.

¹⁰⁷ Viehweger, 2002, p.18.
L'échangeur ionique est doté de groupes fonctionnels cationiques pour intercepter les anions, ou anioniques pour les cations¹⁰⁸. La phase solide (microbilles) va fixer les ions grâce aux forces électrostatiques¹⁰⁹. L'éluant est composé d'un contre-ion, c'est-à-dire un ion de charge opposée au groupe fonctionnel. Ici, c'est une solution et carbonate et d'hydrogénocarbonate¹¹⁰. Cet éluant permet de remplacer les anions ou cations de la phase mobile par une charge similaire et de conserver un équilibre des charges (cf. fig.20, p.18)¹¹¹. La solution contenant les *analytes* est mélangée dans le tube avec l'éluant afin de les pousser vers les microbilles et à les transporter vers le détecteur après la dissociation des sels¹¹². Les différents ions sont identifiés par un détecteur conductimétrique. Le modèle de l'appareil s'appelle Dionex[®] IC-90, la colonne Dionex IonPac[®] AS14 et la pompe SSI 222B HPLC. Le programme utilisé pour l'interprétation des résultats s'appelle Chromeleon^{®113}.

phase stationnaire Figure 20 : Réactions entre la phase stationnaire, l'éluant et l'analyte durant leur passage dans la colonne. Viehwenger, 2002, p.18.

3.2.2 Spectrométrie d'émission optique avec plasma à couplage inductif (ICP-OES)

L'ICP-OES permet de détecter une grande quantité d'ions métalliques grâce aux photons caractéristiques à chacun. Une solution contenant les *analytes* est aspirée par une tige métallique dans la machine. Ensuite, celle-ci *nébulise* * la solution¹¹⁴. La solution sous forme de brouillard passe ensuite dans un *plasma* * dont la température est entre 8'000 et 10'000°C ¹¹⁵: les ions métalliques sont excités,

¹⁰⁸ Viehweger, 2002, p.18.

¹⁰⁹ Ibidem.

¹¹⁰ Information obtenue par mail auprès de Mr Kipfer, responsable des départements Chimie, Cuirs et Polymères du Laboratoire Dubois, le 17 juillet 2015.

¹¹¹ Viehweger, 2002, p.19.

¹¹² Information obtenue par mail auprès de Mr Kipfer, responsable des départements Chimie, Cuirs et Polymères du Laboratoire Dubois, le 17 juillet 2015.

¹¹³ Cf. Annexes chapitre 9 « Fournisseurs », p.44.

¹¹⁴ Flandes-analyses, 2015 [en ligne].

¹¹⁵ Information obtenue par mail auprès de Mr Kipfer, responsable des départements Chimie, Cuirs et Polymères du Laboratoire Dubois, le 17 juillet 2015.

et leurs électrons se déplacent d'une couche électronique à une autre, afin de diminuer leur niveau d'énergie. Lors de ce déplacement, les électrons émettent de l'énergie sous forme de photons caractéristiques à chaque élément. Les photons, dont la longueur d'onde est spécifique à chaque élément, sont ensuite détectés par un *spectromètre**. Leur concentration est évaluée en fonction de la mesure de leur intensité¹¹⁶. Le système de préparation de l'échantillon s'appelle Varian[®] SPS3, alors que l'appareil contenant le plasma, le spectre d'émission optique est le modèle Varian[®] 710-ES et le programme qui gère la machine se nomme ICPExpert[®].

3.3 Résultats

Tous les résultats des analyses sont résumés dans les tableaux 10-15, p.62-64 (cases grises) en µmoleq/g. Les résultats en µg/g sont présentés en annexes dans le tableau 1, p.13-14 (cases grises).

3.3.1 Teneurs en ions de la mosaïque n°8 (tesselles et mortier)

La CE des solutions préparées à partir des prélèvements PA1, PA2 et PA3 est respectivement de 4974, 3157 et 241µS/cm. Le pH de ces mêmes solutions est de 12.1, 12 et 8.9. La somme des ions qu'elles contiennent (SI) s'élève à 9378, 5554 et 1148µg/g, pour un bilan ionique (BI) élevé pour les deux premiers échantillons (374, 228µmoleq/g) et plus bas pour le troisième (26µmoleq/g).

Pour les prélèvements PB1, PB2 et PB3, la CE des solutions obtenues vaut 845, 335 et 275µS/cm. Leur pH avoisine 8. La SI qu'elles contiennent s'élève à 9340, 2271, 2021µg/g, pour un BI bas (6, 2, 12 µmoleq/g).

Les deux échantillons PA1 et PA2 se distinguent clairement des autres échantillons par un pH très alcalin et un BI élevé. Les SI varient entre à peu près 0.1 et presque 1% de masse.

La CE de la solution de la tesselle M8_TPA est à 30 μ S/cm pour un pH de 7,4. Son BI est bas, pour un SI à 81 μ g/g. La CE de la tesselle M8 _TPB est à 59 μ S/cm pour un pH de 6,8. Son BI est bas, pour un SI à 332 μ g/g.

Répartition des ions :

- Dans les deux prélèvements (PA et PB), Cl⁻ et NO₃⁻ sont présents en faible quantité, mais leur concentration est plus élevée en surface qu'en profondeur, du moins sur la profondeur échantillonnée.
- Ca²⁺ est lui aussi plus concentré en surface qu'en profondeur, mais est présent en très grande quantité.
- La teneur en K⁺ diminue en profondeur dans le prélèvement PB, alors qu'elle est plus élevée
 « au centre » dans le prélèvement PA.

¹¹⁶ Evans Analytical Group, 2015 [en ligne].

- La concentration en Na⁺, qui est le deuxième ion le plus abondant le long des deux profils PA et PB, diminue progressivement en profondeur dans le prélèvement PA. Dans le prélèvement PB, il est moins concentré à mi-profondeur.
- SO4²⁻ est plus concentré vers la surface qu'en profondeur dans le prélèvement PA et inversement au point PB ; de plus en PB, la concentration du sulfate est du même ordre de grandeur que la somme des concentrations de Ca²⁺ et de Na⁺.
- Du Mg²⁺ est identifié dans le profil PB 2.
- La tesselle M8_TPA contient du Na⁺ et des traces de K⁺, Cl⁻ et SO4²⁻.
- La tesselle M8_TPB contient du Ca²⁺, du SO₄²⁻ et des traces de Na⁺ et de Cl⁻.

3.3.2 Teneurs en ions de la mosaïque n°7 (mortier de restauration)

La CE des prélèvements PA1, PA2 et PA3 est respectivement de 544, 2283 et 5837 µS/cm. Leur pH est à 9.33, 11.8 et 12.1. Leur SI s'élève à 2157, 2329 et 9651 µg/g, pour un BI plutôt élevé pour tous les échantillons (66, 91, 467 µmoleq/g).

Pour les prélèvements PB1, PB2 et PB3, la CE vaut 911, 719 et 3336 µS/cm. Leur pH est à 10.56, 11.03 et 12.07. Leur SI s'élève à 3682, 2332 et 5955, pour un BI élevé (108, 67, 280 µmoleq/g).

Pour tous les échantillons analysés les pH sont élevés (entre 9.33 et 12.09). Les SI varient entre à peu près 0.2 et presque 1% en masse.

Répartition des ions :

- Contrairement à ce qui était observé pour la mosaïque M8, la teneur en Ca²⁺ augmente énormément en profondeur.
- Les concentrations des ions SO4²⁻, NO3⁻, K⁺ et Na⁺ diminuent en profondeur, du moins sur la profondeur échantillonnée.
- les ions Cl⁻, NO₂⁻, NO₃⁻, Al³⁺ et NH₄⁺ ne sont présents qu'en faible quantités.
- Le long du profil PA, les ions Cl⁻ sont à un taux plus ou moins identique dans les trois profondeurs analysées, alors que ce taux diminue progressivement en profondeur le long du profil PB.

3.3.3 Autres résultats concernant l'analyse

Deux « anomalies » ont été observées lors des analyses de chromatographie ionique :

- Un pic associé aux acides organiques situé entre le pic du fluor et celui du chlorure a été observé dans tous les échantillons ;
- Un pic inversé, détecté entre le pic des acides organiques et le chlorure, a été observé dans tous les échantillons. Sachant que l'éluant est composé de carbonate et hydrogénocarbonate, ce pic pourrait représenter des carbonates provenant de l'échantillon : leur concentration dans la solution étant inférieure à la concentration des carbonates dans l'éluant, le pic est détecté, mais inversé car sa concentration (et donc sa conductivité) est inférieure à celle de l'éluant.

3.4 Interprétation

3.4.1 Mosaïque n°8 (tesselles et mortier)

Un bilan ionique très élevé indique un déséquilibre des charges entre les anions et les cations. S'il est d'une valeur positive ceci indique qu'il y a des anions présents dans la solution qui n'ont pas été pris en compte pendant l'analyse (un BI négatif indique qu'il y a des cations qui n'ont pas été détectés). Si un grand BI positif coïncide avec un pH élevé on peut considérer que les anions non mesurés sont HCO₃⁻ et/ou des carbonates : « *carbonate is dominating over HCO₃⁻ and CO₂ at pH values above 10.3, hydrogen carbonate predominates at pH-values between 10.3 and 6.4 and CO₂ below 6.4¹¹⁷. » A des pH supérieurs à 11, il est possible que des hydroxydes (OH-) soient présents.*

Des valeurs de BI élevées combinées avec des pH élevés sont observées dans les échantillons : M8_PA1 et 2, M7_PA2 et 3 et M7_PB1 à 3. Par exemple, dans les deux premiers échantillons M8_PA1 et PA2 la quantité de cations (p.ex. 361 µmoleq/g de calcium et 33 µmoleq/g de sodium dans l'échantillon M8_PA1) est disproportionnée par rapport à la quantité d'anions (11,3 µmoleq/g de chlorures et 12,3 µmoleq/g de nitrates). Les sels pouvant se former dans M8_PA1 et PA2 seraient donc majoritairement composés de carbonates ou hydroxycarbonates de calcium et de sodium. Le prélèvement M8_PB présente un faible et donc très bon BI, signifiant que les charges anioniques et cationiques détectées et analysées sont équilibrées entre elles. Cette observation est confirmée par un pH légèrement basique (8), mais presque neutre. Le sulfate (maximum de 126,3 µmoleq/g) forme la majorité des sels pouvant cristalliser, principalement sous forme de sulfates de calcium et de sodium. Le reste des sels pouvant se composer de chlorures et nitrates de potassium et de sodium.

La plus faible teneur en potassium dans la partie supérieure du prélèvement M8_PA qu'en profondeur peut être due à une autre composition de mortier qui, dans cette zone, devait « caler » la tesselle dans le mortier d'origine. Mais vu les faibles quantités de ce ion, une interprétation plus poussée ne semble pas possible.

La concentration en sodium, qui est le deuxième ion le plus abondant le long des deux profils M8_PA et PB, diminue progressivement en profondeur dans le prélèvement PA. Ceci pourrait être dû soit à une composition hétérogène présente dans les matériaux, soit cet ion s'est accumulé vers la surface à cause du phénomène d'évaporation.

3.4.2 Mosaïque n°7 (mortier de restauration)

Les échantillons du mortier de restauration présentent un BI globalement élevé, et contiennent une grande quantité de calcium et de sodium. Excepté pour le prélèvement M7_PA1, tous les échantillons ont un pH au-dessus de 10,3. Ainsi, dans ces échantillons les ions carbonate sont plus abondants que les ions hydrogénocarbonate et il y a, sauf dans les échantillons les plus superficiels (PA1 et PB1),

¹¹⁷ Bläuer-Böhm, 1996, p.1510.

probablement aussi des ions hydroxyde. Les phases salines qui peuvent le plus probablement se former sont donc le carbonate de sodium et le dihydroxyde de calcium. Le potassium, présent en moins grande quantité, pourrait former d'autres sels en se combinant avec les ions chlorure, nitrate et sulfate.

3.4.3 Interprétations générales sur les ions présents et leur origine possible

Les résultats de ces analyses corroborent ceux des analyses effectuées sur les efflorescences de sels en 2005 et 2013. La présence de carbonates de calcium et de sodium dans les échantillons du mortier n°7 et l'échantillon M8_PA est spécifique aux ciments et aux mortiers de chaux hydraulique¹¹⁸. La couleur blanchâtre du prélèvement PA corrobore cette interprétation. Ce dernier est donc représentatif des zones restaurées de la mosaïque.

Les ions chlorure et nitrate sont toujours présents corrélativement, et leurs concentrations sont majoritairement proportionnelles au potassium. Ces trois ions proviennent généralement de l'environnement des monuments, principalement de l'activité humaine et animale autour ou au sein même du site¹¹⁹. En effet, les mosaïques étudiées sont entourées d'anciens terrains agricoles¹²⁰ : elles ont donc pu être exposées à des produits chimiques issus de l'agriculture, dans lesquels on retrouve ce type de composants. De plus, certains terrains sont des prés où paisse le bétail, qui produit une urine pouvant contenir une grande quantité de potassium¹²¹. Par ailleurs, une route passe à proximité du site et les chlorures sont utilisés pour le déglacement des routes en hiver¹²².

L'ion nitrite (NO₂⁻) présent dans les prélèvements est quant à lui une espèce chimique instable qui se transforme spontanément en nitrate.

Les pics d'acides organiques pourraient correspondre à la/des combinaison/s entre les ions minéraux présents et les matériaux organiques utilisés pour le lustrage du *tessellatum* à de multiples reprises¹²³. Finalement, les produits de nettoyage tels que savons, lessives, acides et détergents sont aussi une source d'apport de sels, notamment du sodium et du calcium.

Nous n'irons pas plus avant dans l'interprétation de l'origine de ces espèces salines: en effet, malgré la grande plausibilité de certaines hypothèses, il est difficile, voire impossible de certifier la provenance desdits sels/ions. Néanmoins, on peut conclure que la majorité de ces sels sont arrivés soit lors de

¹¹⁸ Arnold, 1991, p.105-108.

¹¹⁹ Arnold, 1991, p.108.

¹²⁰ Cf. chapitre 2.1.1 « Environnement géographique et climatique », p.15.

¹²¹ Bläuer et Rousset, 2014, p.309.

¹²² Bläuer et Rousset, 2014, p.311 et Arnold, 1991, p.108.

¹²³ Cf. chapitre 2.1.4 « Restaurations antérieures », p.21.

l'enfouissement de l'objet, notamment des chlorures, potassium et nitrates, soit à cause de l'utilisation de matériaux de restauration inadaptés car contiennent des sels (ciment, chaux hydraulique).

4. Objectifs et propositions de conservationrestauration

En résumé, nous constatons la présence de sels qui cristallisent cycliquement à la surface des mosaïques. De nombreuses altérations dues à leur présence, combinée à d'autres sources d'altérations (T, HR, etc.), sont observées depuis de nombreuses années. Par ailleurs, il semblerait que la source d'apport des sels soit interrompue.

Au vu des résultats d'analyses obtenus et des risques qu'encourent les mosaïques à long terme, l'essai d'application de compresses de dessalement est une option intéressante.

Deux compresses seront donc testées sur chaque mosaïque, afin d'évaluer l'efficacité respective de la perlite et du sable de quartz comme charge minérale. Pour comparer entre elles plus de variétés de compresses, d'autres mélanges sont testés en parallèle sur 8 planelles salées artificiellement et de façon contrôlée à l'aide d'un mélange de sels similaires à ceux observés dans les mortiers des mosaïques. La porosité de ces planelles est similaire au lit-de-pose de la mosaïque n°8. Le modèle de la planelle s'appelle Hartton¹²⁴.

5. Préparation des planelles

5.1 Choix du matériau

Des substrats en terre cuite ont déjà été utilisés dans d'autres recherches pour évaluer certaines qualités des compresses¹²⁵. Notre choix s'est porté sur une sorte de planelle en terre cuite à porosité fine de 20cm de côté pour 1,7cm de hauteur (cf. Annexes fig.39, p.25). Elle a été choisie pour plusieurs critères : sa faible épaisseur et sa petite taille permettent d'obtenir un résultat de dessalaison à priori plus rapide pour une porosité fine. Par ailleurs, sa porosité est quasiment identique à la porosité du lit de pose de la mosaïque n°8¹²⁶. Nous admettrons donc que l'efficacité du dessalement par compresse obtenue sur ce type de matériau est assez comparable à celle qui pourrait être atteinte sur l'une des mosaïques d'Orbe-Boscéaz.

¹²⁴ Cf. Annexes chapitre 9 « Fournisseurs », p.44.

¹²⁵ Vergès-Belmin *et al.*, 2013, p.65.

¹²⁶ Cf. chapitre 6.2.2.3 « Résultats » (de porosimétrie), p.44.

5.2 Préparation des planelles

Un mélange de différents sels purs a été solubilisé dans de l'eau déminéralisée suite à des calculs de permettant d'obtenir des concentrations ioniques du même ordre de grandeur que celles mesurées dans les matériaux des mosaïques d'Orbe-Boscéaz. Les mélanges ont été obtenus comme indiqué dans le tableau ci-dessous :

Qté sels pour 2l d'eau déminéralisée	NaCl	NaNO ₃	Na ₂ SO ₄	K ₂ CO ₃	CaSO ₄ x 2H ₂ O
Bain 1 (AG 1-3)	2,903	4,800	30,702	9,034	4,270
Bain 2 (AG 4-6)	2,938	4,807	30,740	9,012	4,272
Bain 3 (AG 7-9)	2,927	4,831	30,744	9,045	4,271
Bain 4 (AG 10-12)	2,949	4,851	30,847	9,079	4,271

Tableau 2 : Quantité de sels pour chaque bain d'eau déminéralisée (21). ©HE-Arc CR, 2015.

Les planelles sont pesées, numérotées au crayon gris sur le côté, puis baignées pendant 5 jours dans la solution saline préparée suivant le tableau 2 (p.40) pour permettre à la solution de pénétrer au cœur de la planelle (cf. Annexes fig.33, p.21). Le 6^{ème} jour, elles sont séchées au four à 40°C pendant 1 mois environ (cf. Annexes fig. 37-38, p.22.) jusqu'à stabilisation du poids (poids identique entre 2 pesées à un intervalle de 24h)¹²⁷ ; la température de 40°C a été choisie de sorte à sécher les planelles sans risquer de déshydrater le gypse. La différence entre le poids des planelles mesuré avant les bains puis après bains et séchage à 40°C permet d'évaluer la quantité de sels effectivement contenue dans la porosité des planelles, soit environ 2 grammes par planelle.

5.3 Climat

Les planelles sont stockées durant l'application des compresses dans une armoire climatique à 20°C +/-1,5°C et à une humidité relative à 85% HR +/-2% (cf. Annexes fig.35-36, p.21). La température ne peut pas être régulée, mais est stabilisée. Cette humidité relative a été choisie car le climat obtenu est le climat contrôlable avec cette armoire climatique le plus proche de conditions régnant dans les pavillons III et IV (cf. Annexes fig.7-8, p.7).

6. Compresses

6.1 Choix des matériaux et des proportions

La composition des compresses étudiées est basée sur les mélanges tri-composants présentés dans le chapitre 1.3 « Méthode de dessalement des mosaïques » (p.12), composés de kaolin, de pulpe de cellulose et d'une charge minérale. Le principal sujet de ce mémoire est de comparer l'efficacité d'une compresse chargée de perlite avec une compresse chargée de sable de quartz.

¹²⁷ Pas de balance plus précise supportant leur poids, précision jusqu'à 0.1g.

L'intérêt de remplacer le sable de quartz par la perlite se justifie pour une raison principale : le poids de la perlite, qui est environ 20 fois inférieur au poids du sable de quartz¹²⁸. Cette légèreté permet d'appliquer une compresse sur une surface verticale en limitant les risques que la compresse ne se détache du mur par force gravitationnelle. De plus, elle diminue les risques d'altération du substrat si la compresse est appliquée sur une surface présentant des cloques et des soulèvements. Sans compter le prix du matériau, qui est inférieur au prix du sable. Finalement, le laboratoire de conservation-restauration des Sites et Musées romain d'Avenches a testé avec succès en 2012, une compresse à base de kaolin, de perlite, de bille de verre et d'Arbocel[®] BC1000 sur les maçonneries de la villa romaine de Pully¹²⁹. Des recherches plus avancées sur les propriétés de la perlite et ses capacités de dessalaison semblent pertinentes, car à notre connaissance une seule étude expose l'utilisation de la perlite dans les compresses, mais avec une technique de mouillage très spécifique qui empêche toute comparaison d'efficacité avec d'autres compresses¹³⁰.

Les matériaux choisis pour la composition des compresses sont basés sur les matériaux utilisés par Mme Lubelli¹³¹ dans le cadre de sa recherche sur les porosités des compresses, afin d'obtenir des matériaux aux propriétés comparables et disponibles sur le marché. Les proportions des composants sont basées sur les mélanges utilisés pour l'application de compresses sur des substrats microporeux¹³². La composition des différents matériaux est présentée en annexes chapitre 10 « Fiches techniques », p.47.

6.2 Caractéristiques des compresses

Les matériaux et compresses testés sont choisis et évalués en fonction de quatre critères : la CE de chaque matériau, la porosité de chaque compresse, l'ouvrabilité de chaque mélange et l'apparition (ou non) de microorganismes. Finalement, des prélèvements dans les planelles et les mortiers des mosaïques analysés par CI et IPC permettront de comparer la quantité d'ions présents dans les matériaux avant et après l'application.

6.2.1 Conductivité électrique

Pour éviter l'apport de nouveaux sels dans le substrat, les matériaux utilisés pour la fabrication des compresses doivent contenir le moins de sels possible. Pour évaluer la quantité de sels présents dans les compresses, 10ml de chaque ingrédient de compresse est baigné dans 40ml d'eau et le mélange est agité durant 1 minute. Ensuite, leur CE est mesurée à plusieurs intervalles de temps¹³³ durant environ

- ¹²⁹ Terrapon, 2013, p.9.
- ¹³⁰ Protz et Wolter, 2004.
- ¹³¹ Lubelli *et al.*, 2013, p.54-61.
- ¹³² *Ibidem* et Bourgès et Vergès-Belmin, 2013, p.113-121.

¹²⁸ Cf. Annexes tableau 3, p.23.

 $^{^{133}}$ 10 minutes, 1 heure, 2 heures, 3 heures, 4 heures, 5 heures, 25 heures, 119h et 149h.

une semaine, ceci afin de déterminer si les matériaux libèrent des ions à long terme, et en quelle quantité.

Aucun ingrédient ne dépasse 0,1% TDS¹³⁴ (cf. Annexes tableau 3, p.23). Tous semblent donc adéquats pour la fabrication de compresses. On constate néanmoins que la perlite (fine et grossière) et le kaolin « China Clay » libèrent progressivement des ions au fil du temps, alors que le kaolin « Gleiblish », l'Arbocel[®] et le sable de quartz (fin et grossier) ne libèrent quasiment plus d'ion après 5 heures (cf. fig.21, p.42). Le choix final du kaolin s'est porté sur le moins chargé, c'est-à-dire le Kaolin « Gleiblish ». La légère augmentation de charges que l'on observe sur l'intégralité des matériaux provient certainement de l'évaporation de l'eau au fil du temps (env. 2ml après une semaine), malgré l'application d'un Parafilm[®] au-dessus des récipients.

Figure 21 : Evolution de la proportion des charges ioniques des matériaux testés dans une solution durant environ une semaine. ©HE-Arc CR, 2015.

6.2.2 Porosité des matériaux et des compresses

Les compresses à priori les plus efficaces sont celles favorisant le phénomène de transfert des ions par advection. Pour cela, la compresse doit avoir des pores majoritairement plus fins que le matériau à dessaler. Elle devrait aussi être plus poreuse que le substrat. C'est pourquoi nous avons procédé à l'évaluation de quantité et de la qualité de la porosité.

 134 % TDS = pourcentage des sels par rapport au total des solides dissous.

Cependant, la méthode d'analyse nécessite que le matériau soit sec. Or, la répartition des rayons d'accès aux pores et la porosité totale d'un matériau évolue en fonction de sa teneur en eau : elle peut diminuer ou augmenter en fonction de ses matériaux constitutifs et de leur répartition. Sachant que les compresses et les mortiers sont composés de plusieurs matériaux aux propriétés variables (dimensions et hygroscopicité), il est difficile de prédire si la porosité va diminuer (p.ex. accumulation du kaolin et de la perlite dans les pores) ou augmenter (p.ex. gonflement de la cellulose et donc porosité intergranulaire plus grande) en proportion et/ou en dimension.

6.2.2.1 Méthode d'analyse

La porosité des matériaux (tesselles et mortiers) a été évaluée par porosimétrie par injection de mercure (PIM/MIP). Cette méthode d'analyse qualitative et quantitative nécessite le prélèvement d'un échantillon. La MIP mesure la répartition des rayons d'accès aux pores compris entre 200 et 0,0018 µm. La loi de Jurin permet de calculer le rayon moyen d'accès aux pores en fonction du volume de mercure injecté¹³⁵ :

	P _{ca} = Pression capillaire ou de mercure
$P_{ca} = \frac{2ts \cos \theta}{1}$	t _s = tension superficielle
R	Θ = angle de contact
	R = rayon d'accès au pore

Pour mettre en pratique ce calcul, l'échantillon parfaitement sec est mis dans un conteneur en verre. Le conteneur est alors mis sous vide. Ensuite, la pression est augmentée par paliers réguliers jusqu'à la valeur maximale possible avec l'appareil : le mercure a alors entièrement rempli la porosité connectée de l'échantillon. Cette étape correspond physiquement à un drainage¹³⁶. Ensuite, la pression est abaissée par paliers progressifs jusqu'à la pression atmosphérique. Le mercure étant un fluide non mouillant et la porosité étant tortueuse, à la fin de cette étape, une partie plus ou moins grande de mercure reste toujours piégée dans la porosité du matériau. La différence de volume de mercure présent dans la porosité entre l'intrusion et l'extrusion exprimée en mL/g indique la proportion de mercure piégé (cf. Annexes p. 35 et tableau 5 p.27), qui donne des informations sur la complexité du réseau poreux. Généralement, un deuxième drainage suit l'imbibition : *« si l'échantillon subit un second cycle d'injection, la porosité libre est mesurée ainsi que la valeur réelle de la porosité piégée, par la différence entre la porosité totale (1^{er} cycle d'injection) et la porosité libre (2^{eme} cycle d'injection)¹³⁷. <i>»* Le mercure, non mouillant, est utilisé car il ne dissout aucun élément¹³⁸.

- ¹³⁶ Homand et Duffaut, 2000, p.35.
- ¹³⁷ Homand et Duffaut, 2000, p.37.
- ¹³⁸ Webb, 2001, p.4.

¹³⁵ Homand et Duffaut, 2000, p.36.

6.2.2.2 Echantillonnage

La porosité de différentes tesselles a préalablement été mesurée en 1994. Le résultat de ces mesures a donc été réutilisé pour cette étude. Pour cette étude, six fragments de la mosaïque n°9 sont utilisés pour la mesure de la porosité du mortier (lit de pose et nucleus analysées séparément). Ces prélèvements, bien que ne provenant pas de la mosaïque n°8, ont été jugés utilisables pour caractériser indirectement cette dernière parce qu'elles se trouvent toutes deux dans le même bâtiment (à l'époque romaine), qu'elles datent de la même époque et qu'elles présentent clairement les mêmes matériaux de construction ainsi que la même structure. On peut donc considérer que ces analyses de porosimétrie sont représentatives de l'ensemble des mosaïques d'Orbe, excepté dans les emplacements où le mortier d'origine a été consolidé ou remplacé par un nouveau mortier. Ainsi, de nouveaux prélèvements sur la mosaïque n°8 sont évités.

Le mortier de restauration de la mosaïque n°7 a été prélevé dans la bordure sud du mortier. Chaque échantillon a ensuite été séché à 105°C durant 3 jours, puis conservé dans une caisse conditionnée au gel de silice à température ambiante pour être envoyé au laboratoire (cf. Annexes fig.39-45, p.25-26).

6.2.2.3 Résultats

Un tableau récapitule les volumes de porosité totale et les pics de rayons d'accès aux pores à la fin de ce chapitre en page 52.

Mosaïque n°8 (mortier et tesselles)

Les résultats obtenus indiquent que la porosité connectée des tesselles noires non-altérées représente environ 4.5% du volume du matériau. La moyenne de porosité connectée des tesselles noires, beigegris, jaune et rose est de 7.3%. 13.6% des rayons d'accès mesurent entre 0.01 et 0.1 µm, 28.5 % entre 0.1 et 1 µm, 48.2% entre 1 et 10 µm et 10% entre 10 et 100 µm¹³⁹.

La porosité du *lit de pose* représente 45.7% du volume du matériau. La répartition des tailles des pores est *unimodale** : les valeurs des rayons d'accès aux pores sont compris entre 0,9 et 0,01µm ; la plus fréquente (cf. fig.22, p.45, pic maximal) est égale à 0.21µm.

La porosité connectée du *nucleus* représente quant à elle 41.5% du volume de l'échantillon. La répartition des pores est unimodale : les rayons d'accès sont compris entre 90µm et 0.006µm avec un pic maximal à 0.21µm (cf. fig.23, p.45).

¹³⁹ Felix, 1996.

Mosaïque n°7 (mortier de restauration)

La porosité du mortier de restauration compose 25.6% du volume de l'échantillon. Sa répartition de taille des pores est *bimodale**: les rayons d'accès aux pores se situent entre 110 et 0.006, mais deux pics se situent respectivement à 3.9 μ m et à 0.2 μ m (cf. fig.24, p.45).

Planelles

La porosité des planelles compose 28.3% du matériau. La répartition de la taille de ses pores et unimodale. Les rayons d'accès aux pores se situent entre 0.4µm et 0.06µm, le pic étant à 0.29µm (cf. fig.25, p.45).

Figure 24 : Répartition des rayons d'accès du mortier de Figur restauration. ©CNRS, 2015.

Figure 23 : Répartition des rayons d'accès du nucleus. ©*CNRS, 2015.*

Figure 25 : Répartition des rayons d'accès des planelles. ©CNRS, 2015.

6.2.2.4 Interprétation

Cette méthode mesure le rayon d'accès aux pores, et non pas le rayon des pores¹⁴⁰. Ainsi, la quantité de macropores est parfois sous-estimée lorsque la porosité est dite « étalée » - c'est-à-dire où plusieurs ordres de grandeur sont présents et/ou mélangés. De plus, un pore peut aussi avoir un diamètre irrégulier¹⁴¹.

Les tesselles ont une porosité totale 10 fois inférieure au mortier de la mosaïque. Cependant, la grandeur des rayons d'accès aux pores des tesselles est environ 10 fois supérieure à celle du mortier. En effet, 48.2% de ses rayons d'accès des tesselles sont compris entre 1 et 10µm, alors que les rayons d'accès du mortier se situent majoritairement entre 1 et 0.01µm (100% pour le lit de pose, environ 70% pour le nucleus). Toutefois, environ 15% des rayons d'accès aux pores du nucleus mesurent entre 3 et 100µm.

Le mortier de restauration de la mosaïque n°7 a un réseau à la fois macroporeux et microporeux nettement plus équilibré que le nucleus.

La finesse des rayons d'accès de la planelle sont induits par la méthode de production industrielle de la planelle, qui permet d'obtenir une porosité extrêmement fine et régulière.

Pour conclure, les planelles et la mosaïque n°8 présentent majoritairement un réseau microporeux. Toutefois, sans avoir une macroporosité très développée, le nucleus contient une petite proportion de macroporosité située entre 3 et 100 µm.

6.2.2.5 Porosité des compresses

Les rayons d'accès aux pores du lit de pose et des planelles sont très fins. Pour créer un phénomène de capillarité, et donc d'advection, les rayons d'accès aux pores des compresses devraient être toujours plus fins que le lit de pose¹⁴². Parmi les matériaux actuellement connus dans les méthodes de dessalement, seul le kaolin (0.04-1µm) et la bentonite (0.007-130 µm) ont une porosité similaire à ces matériaux¹⁴³ (cf. fig. 26, p.47). Pour les rayons de pores de mesure égale ou inférieure à 0.04µm, seul le phénomène de diffusion sera effectif. La bentonite n'a pas été utilisée car, étant une argile gonflante, elle se rétracte considérablement au séchage¹⁴⁴. La porosité de l'Arbocel[®] BWW40 se situe majoritairement à 15-20µm (cf. fig.27, p.47, trait gris), alors que le sable se situe entre 30 et 130µm pour le sable de 0.08 à 0.5mm (cf. fig.28, p.47, trait noir) et entre 80 et 110 µm pour le sable de 0.5 à

¹⁴⁰ Homand et Duffaut, 2000, p.36.

¹⁴¹ Informations obtenues par téléphone auprès de Mr Claude Felix, géologue, le 23 avril 2015.

¹⁴² Lubelli, 2011, p.382.

¹⁴³ Lubelli *et al.*, 2013, p.57.

¹⁴⁴ Bourguignon, 2009, p.93.

Figure 26 : Répartition des rayons d'accès du kaolin et de la bentonite. ©Lubelli et al., 2013, p.57.

Figure 27 : ©Répartition des rayons d'accès de deux types de pulpe de cellulose. Lubelli et al., 2013, p.57.

Figure 28 : Répartition des rayons d'accès de sable fin et grossier. ©Lubelli et al., 2013, p.56.

Cette étude traitant de la comparaison entre l'utilisation du sable et de la perlite comme charge minérale, deux compresses à tester vont être appliquées sur la mosaïque n°8 (mortier et tesselles) et sur la mosaïque n°7 (mortier de restauration). Les initiales utilisées pour nommer les compresses sont : A pour Arbocel[®], K pour kaolin, S pour sable, P pour perlite, F pour fin et G pour grossier. Les compresses appliquées sur les planelles sont suivies d'un numéro pour les différencier des compresses des mosaïques.

Compresses pour la mosaïque n°8 (tesselles et mortier)

Le choix de la compresse a été porté sur un mélange d'Arbocel[®] BWW40, de kaolin et de sable de quartz à proportion en poids de 1:2:1¹⁴⁵, appelé AKSF (cf. fig.29 et tableau 3, p.48). Toutefois, le sable grossier utilisé dans le mélange d'origine a été remplacé par du sable fin pour diminuer le diamètre des pores (cf. figures 29 et 31, p.48). La porosité totale d'AKSF est de 53.9%, donc plus élevée que le substrat.

¹⁴⁵ Lubelli *et al.*, 2013, p.59.

Cette compresse est adaptée à une application sur un matériau à porosité fine, avec des rayons d'accès principalement entre 0,04 et 5µm, à moindre échelle entre 10 et 130µm (cf. fig.29, p.48). Pour la deuxième compresse, le sable a été remplacé par la perlite en fonction non pas du poids, mais du volume de sable ajouté dans la première compresse. Sa porosité totale est de 57.9%, et a une plus grande proportion de rayons d'accès entre 5 et 10µm qu'entre 10 et 100µm. La répartition des rayons entre 100 et 5µm est moins régulière dans AKPF (cf. fig.30, p.48) que dans la compresse à base de sable (cf. fig.29, p.48). On constate que les rayons d'accès aux pores des deux compresses sont quasi identiques : leur répartition présente dans les deux cas un pic maximal à 0.92µm. Cependant, AKSF est plutôt unimodale, alors que AKPF est bimodale : elle présente un deuxième pic à 4.3 µm.

Nom	Compo	sition des co	mpresses	Proportion (poids)	Proportion (volume)			
AKSF	Cellulose	Kaolin	Sable (F)	1:2:1	1:0,8:0,11			
AKPF	Cellulose	Kaolin	Sable (G)	1:2:1	1:0,8:0,11			
Tableau 3 : Nom, composition et proportion des compresses pour la mosaïque n°8. ©HE-Arc CR, 2015.								

Figure 29 : Répartition des rayons d'accès d'AKSF. ©CNRS, 2015.

Figure 31 : Répartition des rayons d'accès d'AKSG1. ©Lubelli et al., 2013, p.59.

Figure 30 : Répartition des rayons d'accès d'AKPF. ©CNRS, 2015.

Compresses pour la mosaïque n°7 (mortier de restauration)

Le modèle utilisé pour le mortier de restauration correspond à une compresse d'Arbocel[®] BWW40, de kaolin et de sable de quartz à proportions en poids de 2:1:9¹⁴⁶, appelée AKSG (cf. fig.32 et tableau 4, p.49). Son volume de porosité totale s'élève à 56.7%, pour un pic maximal à 9,10. Pour la deuxième compresse, le sable a été remplacé par la perlite grossière en volume, appelée AKPG (cf. tableau 3, p.48). Cependant, le mélange manquait de cohésion : une part de kaolin a donc été ajoutée dans AKPG. Cette dernière contient ainsi, probablement par l'ajout du kaolin, une plus grande proportion de rayons d'accès entre 8 et 6µm, et entre 2 et 0.01 µm qu'AKSG (cf. fig.32 et 33, p.48). Le volume de la porosité totale d'AKPG est de 69%, et ses pics maximaux sont mesurés à 4.5 et 1.7µm (cf. fig.33, p.48). AKSG a, quant à elle, une plus grande proportion de rayons de 2 à 6µm, ainsi qu'entre 100 et 10µm (cf. fig.32, p.48). Le pic principal d'AKSG s'élève à 9.1µm. La porosité d'AKSG obtenue est similaire aux résultats publiés dans la documentation bibliographique, en étant toutefois plus fine : le pic d'accès se situe dans la littérature vers 15µm¹⁴⁷.

Nom	Composition des compresses		Proportion (poids)	Proportion (volume)	
AKSG	Cellulose	Kaolin	Sable (G)	2:1:9	2:0,4:1
AKPG	Cellulose	ellulose Kaolin Perlite (G)		1:1:0,32	1:0,4:1

Tableau 4 : Nom, Composition et proportions des compresses pour le mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015.

Figure 32 : Répartition des rayons d'accès d'AKSG. ©CNRS, 2015.

Figure 33 : Répartition des rayons d'accès d'AKPF. ©CNRS, 2015.

¹⁴⁶ Lubelli *et al.*, 2013, p.59.

¹⁴⁷ Ibidem.

Compresses pour les planelles

Huit compresses ont été testées sur des planelles, dont deux identiques à celles appliquées sur la mosaïque n°8, afin de comparer leur efficacité sur les deux substrats (AKSF et AKPF, nommées ici AKSF1 et AKPF1 pour être différenciées).

Ces huit compresses forment 4 ensembles distinctifs :

- 2 compresses à base de kaolin, de cellulose et de sable, une fois à base de sable fin et une fois à base de sable grossier (cf. tableau 5, p.50, AKSF1 et AKSG1).
- 2 à base de kaolin, de cellulose et de perlite, en reprenant les proportions en volume des compresses à base de sable. Dans la deuxième compresse, la charge de perlite est triplée (cf. tableau 5, p.50, AKPF1 et AKPF3).
- 2 compresses à base de kaolin et de sable, l'une à moitié composée de sable fin, la deuxième de sable grossier (cf. tableau 5, p.50, KSF1 et KSG1).
- 2 compresses à base de kaolin et de perlite, l'une en reprenant les proportions en volume des compresses à base de sable, l'autre en augmentant la quantité de perlite de 2/3 du mélange (cf. tableau 5, p.50, KPF1 et KPF3).

Nom	Compo	sition des co	mpresses	Proportion (poids)	Proportion (volume)
KSF1	Kaolin	Sable (F)		1:3	1:1
KSG1	Kaolin	Sable (G)		1:3	1:1
KPF1	Kaolin	Perlite (F)		4,85:1	1:1
KPF3	Kaolin	Perlite (F)		3,25:1	1:2
AKSF1	Cellulose	Kaolin	Sable (F)	1:2:1	1:0,8:0,11
AKPG1	Cellulose	Kaolin	Sable (G)	1:2:1	1:0,8:0,11
AKPF1	Cellulose	Kaolin	Perlite (F)	1:2:0,036	1:0,8:0,11
AKPF3	Cellulose	Kaolin	Perlite (F)	1:2:0,15	1:0,8:0,33

 Tableau 5 : Tableau récapitulatif du nom, de la composition et des proportions des 8 compresses testées sur les planelles. ©HE-Arc CR, 2015.

Les compresses à trois composantes AKSF1 et AKPF1 sont identiques à celles appliquées sur la mosaïque n°8, et donc déjà présentées. La compresse AKSG1 est trimodale et présente un pic maximal à 2µm et deux autres pics à 0.3 et 0.6µm (cf. fig.35, p.51). La compresse AKPF3 diminue en macroporosité et augmente en microporosité par rapport à AKPF1 : son pic se situe à 1.3µm et est unimodale (cf. fig.37, p.51). Sa porosité totale est aussi supérieure, passant de 57.9 (AKPF1) à 63.2% (AKPF3).

Les compresses KSF1 et KSG1, toutes deux bimodales, montrent que l'utilisation d'un sable plus grossier augmente le diamètre du pique macroporeux : dans KSF1, il se situe à 4µm, alors que dans KSG1, il se situe à 30 µm. Toutefois, leur diamètre d'accès aux micropores, situé autour de 0,3µm, est quasi identique (cf. fig.38-39, p.51). Les compresses KPF1 et KPF3, unimodales, ont toutes deux des rayons d'accès aux pores proches de 0,1µm (cf. fig.40-41, p.52). Néanmoins, KPF1 présente un pic de rayons d'accès aux pores à 0,52µm, alors que le pic de KPF3 se situe à 1.1µm. KPF3 a un volume de porosité totale 5% supérieure à KPF1 (KPF3 : 79.4% et KPF1 : 74.3%). Ici, la quantité de perlite augmente la macroporosité de la compresse et le volume poreux.

Figure 34 : Répartition des rayons d'accès d'AKSF1. ©CNRS, 2015.

Figure 36 : Répartition des rayons d'accès d'AKPF1. ©CNRS, 2015.

Figure 38 : Répartition des rayons d'accès de KSG1. ©Lubelli et al., 2013, p.57.

Figure 35 : Répartition des rayons d'accès d'AKSG1. ©Lubelli et al., 2013, p.59.

Figure 37 : Répartition des rayons d'accès d'AKPF3. ©CNRS, 2015.

Figure 39 : Répartition des rayons d'accès de KSF1. ©Lubelli et al., 2013, p.57.

Figure 40 : Répartition des rayons d'accès de KPF1. ©*CNRS, 2015.*

Log Differential Intrusion vs Pore size

Figure 41 : Répartition des rayons d'accès de KPF3. ©CNRS, 2015.

Du papier japon est apposé comme interface entre le substrat et la compresse. Ayant une porosité propre, il influence certainement les propriétés du transfert. Toutefois, il n'est pas possible de caractériser cette porosité. Les résultats seront interprétés en admettant que sa présence n'influence pas l'échange.

Nom	Porosité totale [%]	Pic 1 [µm]	Pic 2 [µm]
Tesselles	7,3	?	
Lit-de-pose	45,7	0,21	
Nucleus	41,5	0,21	
Mortier de restauration	25,6	3,90	0,20
Planelle	29,0	0,23	
AKSG	56,7	9,10	
AKPG	69,0	4,50	1,70
AKSG1	?	0,35	2,00
AKSF1	53,9	0,92	
AKPF1	57,9	0,92	4,30
AKPF3	63,1	1,30	
KSG1	?	0,30	30,00
KSF1	?	0,30	4,00
KPF1	74,3	0,52	
KPF3	79,4	1,10	

Tableau 6 : Récapitulation des porosités totales connues et des pics de rayons d'accès aux pores. ©HE-Arc CR,2015.

6.2.3 Ouvrabilité

La qualité des compresses va être évaluée en fonction de : leur densité, leur teneur en eau, leur facilité d'application et de retrait et l'apparition de microorganismes. Les compresses utilisées pour un dessalement doivent avoir une bonne cohésion pour être appliquées et retirées aisément, en limitant au maximum les interventions de nettoyage sur le substrat après le dessalement. Elles doivent s'incruster le moins possible dans les fissures du matériau. Par ailleurs, leur poids ne doit pas risquer d'altérer le substrat si celui-ci présente des soulèvements ou cloques, et la compresse doit pouvoir être appliquée verticalement. Ce dernier point ne peut être évalué sur les compresses des mosaïques, car les mosaïques sont horizontales. Toutefois, l'application des compresses sur les planelles sera testée verticalement¹⁴⁸. La compresse utilisée pour le dessalement doit aussi contenir le moins d'eau possible, pour éviter qu'un surplus d'eau ne fasse migrer les sels en profondeur du matériau au lieu de migrer dans la compresse. Finalement, l'utilisation de matériaux organiques composés de fibre de cellulose (papier japon et Arbocel[®] BWW40) détrempés ou humidifiés favorise l'apparition et la propagation de microorganismes¹⁴⁹. L'utilisation de ces matériaux dans la fabrication d'une compresse et son application peut, en cas d'apparition de microorganismes, contaminer le substrat. Une observation de l'apparition de ces microorganismes et des délais de leur propagation est prévue durant l'application des compresses.

6.3 Méthode

Pour exécuter les tests de compresses sur les mosaïques et les planelles, des étapes de préparation des substrats, des compresses et l'application des compresses ainsi que leur suivi se sont déroulées comme suit (cf. Annexes fig.34-35 et 46-59, p.21 et 37-41).

6.3.1 Préparation des mosaïques

- Avant application de la moindre goutte d'eau, retrait à sec des sels cristallisés à la surface du substrat avec un scalpel et une aspiration.
- Sur mosaïque déjà humide : ajout d'eau déminéralisée au spray et retrait du surplus avec papier ménage pour ne pas mettre trop d'eau.
- Application de papier japon très fin (9g/m²⁾ pour protéger surface de dépôts de la compresse (kaolin). Choix d'un papier très fin à cause relief de la mosaïque : il faut éviter les plis ou la perte de contact entre la mosaïque (surtout les joints) et la compresse. Le papier japon est déposé à la surface, humidifié avec un spray puis tapoté avec une éponge ou une brosse pour épouser le relief. S'il y a de petites déchirures à cause d'un dénivelé trop grand (manques de tesselles), on ajoute un morceau de papier japon.

¹⁴⁸ Bourgès et Vergès-Belmin, 2013, p.50.

¹⁴⁹ Bourguignon, 2009, p.66.

- Ajout d'une deuxième couche de papier japon sur le mortier de restauration car la surface plus plane, mais plus rugueuse.

6.3.2 Préparation des planelles

- Emballage des planelles avec du Parafilm[®] pour éviter évaporation de l'eau par le dessous et les côtés. 2 épaisseurs dessus et 2 sur les côtés (renforce et maintient les épaisseurs du dessous).
- Humidification des planelles jusqu'à 50g d'eau environ
- Dépose d'un papier japon sur la surface de la planelle.

6.3.3 Préparation des compresses

- Chaque matériau est pesé séparément à sec avant de tout mélanger. Pour les matériaux légers et composés de très fines particules pouvant se trouver en suspension dans l'air (fibre de cellulose, perlite et kaolin) il est conseillé de porter un masque et des lunettes. L'eau est ensuite pesée et ajoutée progressivement jusqu'à ce que le mélange devienne une pâte facile à travailler.
- Les compresses sont mélangées à mains nues. Ceci permet de mieux sentir la texture et la cohésion de la compresse.

6.3.4 Application sur la surface

- Le mélange est étalé sur la surface avec une taloche, en poussant depuis le centre du tas jusqu'à l'extrémité pour faire « rouler/dérouler » la matière sur la surface, sans risquer de déplacer le papier de soie, le décoller du substrat ou le déchirer.
- L'épaisseur est uniformisée autant que possible, et la compresse doit être la plus tassée possible pour être au maximum en contact avec le substrat. Les compresses appliquées *in situ* mesurent entre 1,5 et 2cm d'épaisseur, celles appliquées sur les planelles mesurent entre 1 et 1,3cm.
- Un film de polyéthylène¹⁵⁰ est appliqué sur la compresse pour éviter une évaporation trop rapide de l'eau.

6.3.5 Suivi

- Surveillance tous les 2-3 jours : conductivité *in situ* et dans l'eau déminéralisée.
- Retrait avant le séchage complet de la compresse et la baisse de la conductivité électrique.

¹⁵⁰ Produit : Tangan n°11[®]. Cf. Annexes chapitre 9 « Fournisseur », p.44.

6.4 Constats après application sur l'ouvrabilité des compresse

Les critères présentés précédemment, c'est-à-dire la densité, la teneur en eau, l'application, le retrait et l'apparition de microorganismes sont évalués dans ce chapitre. Le tableau 9 résume les comparaisons des propriétés des compresses en page 60.

6.4.1 Densité

6.4.1.1 Compresses appliquées sur les mosaïques

Dans les deux cas, les compresses à base de perlite sont plus légères. Alors que la différence est de 700g entre les compresses AKPF et AKSF, elle passe à 2 kilos entre les compresses AKPG et AKSG (cf. tableau 7, p.55).

Compresse	Cellulose [g]	Kaolin [g]	Charge	Poids [g]	Eau [g]	Poids total [g]	Proportions (poids)	Proportions (volume)
AKPF	750,01	1499,9	Perlite (F)	35,99	2580,05	4865,95	1:2:0,036	1:0,8:0,11
AKSF	749,94	1499,95	Sable (F)	750,08	2538,34	5538,31	1:2:1	1:0,8:0,11
AKPG	500	500,28	Perlite (G)	154,57	1995,98	3150,83	1:1:0,32	1:0,4:1
AKSG	500,02	250,07	Sable (G)	2249,9	2051,96	5051,95	2:1:9	2:0,4:1

Tableau 7 : Récapitulation des proportions des compresses appliquées sur les mosaïques n°7 et 8. ©HE-Arc CR,2015.

6.4.1.2 Compresses appliquées sur les planelles

Le poids des compresses composées uniquement de sable et de kaolin (KSG1 et KSF1) est d'environ 1200g pour 680cm³ de matière (20 x 20 x 1,7cm) (cf. tableau 8, p.55). Les compresses constituées uniquement de perlite et de kaolin (KPF1 et KPF3) sont respectivement 2 et 3 fois plus légères que les compresses sable/kaolin (558 et 367g). Les compresses à tricomposantes (AKSG1, AKSF1, AKPF1 et AKPF3) ont toutes un poids situé entre 600 et 700g (cf. tableau 8, p.55). Les compresses à base de perlite restent toutefois plus légères.

Nom	Cellulose [g]	Kaolin [g]	Charge	Poids [g]	Eau [g]	Poids total [g]	Proportions (poids)	Proportions (volume)
AKSG1	100	200	Sable (G)	100	293,58	694	1:2:1	1:0,8:0,11
AKSF1	100	200	Sable (F)	100	292,19	692	1:2:1	1:0,8:0,11
AKPF1	100	200	Perlite (F)	3,62	313,67	617	1:2:0,036	1:0,8:0,11
AKPF3	100	200	Perlite (F)	14,83	354,34	669	1:2: 0,15	1:0,8:0,33
KSG1	-	240	Sable (G)	720	199,11	1159	1:3	1:1
KSF1	-	240	Sable (F)	720	204,83	1165	1:3	1:1
KPF1	-	240	Perlite (F)	37,125	268,31	558	4,85:1	1:1
KPF3	-	120	Perlite (F)	49,5	209,53	367	3,25 :1	1:3

Tableau 8 : Récapitulation des proportions des compresses appliquées sur les planelles. © HE-Arc CR, 2015.

6.4.2 Teneur en eau

Les compresses contenant le plus d'eau sont les compresses tricomposantes, car leur proportion de matériaux hygroscopiques est plus élevée (pulpe de cellulose). Par ailleurs, la perlite augmente aussi la quantité d'eau à ajouter dans le mélange par rapport aux compresses contenant du sable (cf. tableaux 7 et 8, p.55, colonne « eau »).

6.4.3 Application et retrait

La perlite est tellement légère qu'elle se tasse difficilement, alors passer de volume à poids est complexe. Idem pour l'Arbocel, mais les références bibliographiques parlent des proportions en poids, ce qui facilite son utilisation.

6.4.3.1 Application

Les densités de KPF1, KSF1 et KSG1 sont telles (cf. tableau 8, p.55) qu'elles ne peuvent pas être appliquées sur une surface verticale : leur poids et leur manque de cohésion les empêche d'adhérer au substrat. Les compresses contenant une grande proportion de sable (AKSG, KSG1 et KSF1) sont rugueuses, abrasives et difficiles à appliquer de manière homogène. En résumé, toutes les compresses bicomposantes sont difficiles à appliquer en surface de la planelle.

Les autres compresses (AKSG1, AKSF(1), AKPF(1), AKPF3, KPF1, KPF3) adhèrent à la planelle lors d'une application verticale de la compresse.

6.4.3.2 Retrait humide et à sec

- AKSG : perd toute cohésion, s'effrite, est difficile à retirer et laisse des résidus en surface.
- AKPG : moyennent cohérente et laisse des résidus en surface.
- AKSF1/AKSF : très cohérente, même après avoir séché. Se retire très facilement à la main en formant de gros fragments et laisse peu de résidus sur la surface.
- AKPF1/AKPF : compresse très facile à retirer, très cohérente et qui conserve de la souplesse même séchée.
- AKSG1 : compresse bien cohérente, facile à retirer.
- AKPF3 : facile à retirer, cohérente, souple, forme de gros fragments lorsqu'on la retire du substrat.
- KSG1 : moyennement cohérente et nécessite l'utilisation d'une spatule pour l'enlever au mieux. Elle adhère au papier japon.
- KSF1 : se retire assez facilement mais manque de cohérence : elle est cassante et son retrait créé des résidus en surface. Le papier japon n'adhère pas à la compresse. Mais elle reste cohérente si elle est retirée lorsqu'elle est encore humide.

- KPF1 : moins facilement retirée que les autres compresses : elle manque de cohérence, et est très cassante. Le papier japon a totalement adhéré à la compresse.
- KPF3 : se détache facilement du papier japon, mais perd toute cohérence lorsqu'elle est sèche et s'effrite/se délite complètement lorsqu'on la retire du substrat.

6.4.3.3 Nettoyage

Sur la mosaïque n°7, des résidus de kaolin et de papier japon se sont déposés dans les irrégularités de surface (cf. fig. 42, p. 57). Pour les retirer sans altérer le mortier de restauration, un nettoyage à l'eau sous pression (airbrush) est nécessaire. Malheureusement, cette méthode apporte de l'eau dans la porosité et risque de faire migrer les ions et former de nouveau sels ou l'apparition de nouvelles efflorescences. La surface de la mosaïque étant constituée de matériaux plus microporeux et à la surface plus lisse (pour les tesselles), un nettoyage à la brosse et à l'aspiration a suffi à retirer la majorité des résidus (cf. Annexes fig.60-62, p.41). Un deuxième nettoyage mécanique sera réalisé lorsque la surface sera moins humide, car les résidus seront moins adhérents au substrat.

Les planelles étant elles aussi lisses et macroporeuses, un nettoyage mécanique était suffisant.

Figure 42 : Etat du mortier de restauration lors du retrait des compresses. A gauche, le papier japon n'est pas encore entièrement retiré et forme une couche de cellulose et de kaolin. A droite, le papier japon a presque été entièrement retiré. Un meilleur résultat que celui de gauche ne peut pas être obtenu sans un nettoyage à l'eau sous pression. ©HE-Arc CR, 2015.

6.4.3 Microorganismes

Des moisissures sont apparues sur la compresse AKSF1 après 13 jours (fig. 44, p.58). Sur les compresses AKSG1, AKPF1, AKPF3 et KPF1, elles sont apparues après 17 jours (cf. fig.43, 45, 46 et 49, p.58-59). Seules les compresses KSG1, KSF1 et KPF3 ne sont pas contaminées par des microorganismes en surface (fig.47, 48 et 50, p.59).

Les compresses les plus contaminées après application sont les compresses AKSG1 et AKSF1 (cf. fig.43-44, p.59). Les compresses AKPF1 et KPF1, qui présentent peu de microorganismes en surface, sont surtout contaminées sur les côtés de compresses.

Par ailleurs, le papier japon fait aussi apparaître les microorganismes: plusieurs compresses sans Arbocel[®] ont présenté l'apparition de microorganismes entre la compresse et la planelle.

Figure 43 : Compresse AKSG1 après application. ©HE-Arc CR, 2015.

Figure 44 : Compresse AKSF1 après application. ©HE-Arc CR, 2015.

Figure 45 : Compresse AKPF1 après application. ©HE-Arc CR, 2015.

Figure 46 : Compresse AKPF3 après application. ©HE-Arc CR, 2015.

Figure 47 : Compresse KSG1 après application. ©*HE-Arc CR, 2015.*

Figure 48 : Compresse KSF1 après application. ©HE-Arc CR, 2015.

Figure 49 : Compresse KPF1 après application. ©HE-Arc CR, 2015.

Figure 50 : Compresse KPF3 après application. ©HE-Arc CR, 2015.

Finalement, les hautes températures augmentent fortement la progression des MOO et le séchage des compresses : alors que les compresses restées en place sur les mosaïques pendant les mois d'avril à mai n'ont été que très peu contaminées par les microorganismes, celles appliquées pour la troisième fois et restée en place pendant le mois de juin ont été très contaminées (AKSF et AKPF). Les températures ont augmenté d'environ 6 degrés entre les 3 applications de compresses. Les températures des dernières semaines étaient plus proches de celle de l'armoire climatique dans laquelle des microorganismes sont aussi apparus sur les compresses. D'après ces résultats, il semblerait qu'une application des compresses soit plus adaptée en automne, en hiver ou au tout début du printemps.

Substrat	Compresse	Densité	Eau	Application	Retrait et nettoyage	Microorganismes
Mosaïque 8	AKSF	\odot	$\overline{\mathbf{O}}$	\odot	\odot	$\overline{\mathfrak{S}}$
	AKPF	\odot	\odot	\odot	\otimes	$\overline{\mathfrak{S}}$
Mosaïque 7	AKSG	\odot	\odot	$\overline{\mathbf{O}}$	\otimes	\odot \odot
	AKPG	0	\odot	$\overline{\mathfrak{S}}$	$\overline{\mathfrak{S}}$	\odot
Planelles	AKSG1	\odot	\odot	\odot	\odot	$\overline{\mathfrak{S}}$
	AKSF1	0	\odot	\odot	\odot \odot	\odot
	AKPF1	\odot	\odot	\odot	\odot \odot	\odot
	AKPF3	\odot	\odot	\odot	\odot \odot	\odot
	KSG1	\odot	\odot	\odot	$\overline{\mathfrak{S}}$	\odot \odot
	KSF1	\odot	\odot	$\overline{\mathbf{i}}$	$\overline{\mathfrak{S}}$	\odot \odot
	KPF1	\odot	\odot	$\overline{\mathfrak{S}}$	$\overline{\otimes}$	\odot
	KPF3	\odot	\odot	\odot	$\overline{\otimes}$	\odot

6.5 Synthèse

Tableau 9 : Récapitulation de l'appréciation des compresses selon plusieurs critères d'utilisation. ©HE-Arc CR,2015.

L'interprétation de des résultats des compresses appliquées sur planelles doit prendre en considération que ces propriétés ont été évaluées sur un substrat à porosité fine et à la surface homogène et exposé à un climat de 85% HR et 20°C (cf. tableau 9, p.60).

Pour les compresses AKSF, AKPF, AKSG et AKPG, leur appréciation dépend aussi de leurs substrats respectifs et de leur environnement climatique.

On peut conclure qu'il n'est pas recommandé d'utiliser des mélanges contenant uniquement du sable et du kaolin, car leur cohésion n'est pas adéquate pour un bon retrait, et leur densité les empêche d'être appliquées verticalement ou sur une surface fragilisée. Pour les compresses contenant une grande quantité de sable, il est très difficile de bien doser la quantité d'eau. Comme le sable n'est pas hygroscopique, il est très dur d'en mettre assez pour avoir une bonne cohérence sans en mettre trop, car le sable n'absorbe pas s'il y a un léger surplus, opposément à la perlite ou à l'Arbocel[®]. Par ailleurs, ces mélanges de sable restent granuleux et abrasifs lorsqu'ils sont malaxés, même combinés à l'eau : il ne faut donc pas se fier à la texture, mais plutôt à la quantité d'eau ajoutée, en comparaison aux autres compresses. Concernant les compresses tricomposantes, elles présentent une meilleure densité, une meilleure application à la verticale et un meilleur retrait. Toutefois, toutes ont été contaminées par des microorganismes. Finalement, les compresses à base de sable de quartz sont plus denses et la quantité d'eau nécessaire est plus difficile à évaluer que pour les compresses à base de perlite. Toutefois, les compresses à base de perlite fine nécessitent un peu plus d'eau, ce qui n'est apparemment pas le cas de la seule compresse composée de perlite grossière.

7. Résultats du dessalement

Nous allons maintenant comparer les teneurs en ions avant et après dessalement des mortiers et tesselles des mosaïques n°7 et 8 ainsi que celles des planelles (cf. Annexes tableaux 1-2, p.13-15).

Trois compresses ont été appliquées sur les mosaïques. Les échantillons pour les analyses CI et ICP ont été prélevés après la dernière compresse. Les prélèvements portent les initiales de la charge utilisée dans les compresses respectives : Les prélèvements faits dans la même zone que M8_PA s'appellent M8_PF (perlite fine), ceux dans la zone de M8_PB s'appellent M8_SF (sable fin), ceux dans la zone de M7_PA s'appellent M7_PG (perlite grossière), et ceux dans la zone de M7_PB se nomment M7_SG (sable grossier). Les échantillons de tesselles appartenant à un certain profil ont été nommés en ajoutant un « T » devant le nom du profil (p.ex. tesselle du profil PA = TPA) (cf. fig.63-66, p.42-43). Concernant les planelles testées en laboratoire, des échantillons pour l'analyse des ions ont été prélevés sur deux planelles respectivement salée et non-salée et ensuite sur chacune des 8 planelles après l'application des 2 compresses. Les échantillons sont prélevés au centre des planelles, dans toute l'épaisseur. L'échantillon non-salé est nommé AG00, l'échantillon salé est nommé AG0, et les autres échantillons sont appelés en fonction du nom de leur planelle (AG1-8).

Quatre dernières analyses ont été faites sur les compresses AKSF, AKPF, AKSG et AKPF (avant dessalement) pour connaître leurs teneurs en ions.

Sachant que la teneur en sels de chaque mortier est très variable en quantité mais aussi en système salin spécifique (mortiers archéologiques vs mortiers de restauration), les résultats de dessalement ne peuvent pas être comparés entre les différentes compresses des mosaïques n°7 et 8.

Pour chaque mosaïque, la comparaison et l'interprétation des résultats est développée en admettant que :

- La quantité et la répartition des ions aux deux emplacements prélevés (p.ex. M7_PA et M7_PG) était les mêmes au début avant dessalement.
- L'évolution du système salin (concentrations et solubilité) dans le milieu poreux a été influencée uniquement par notre intervention de dessalement.

7.1 Résultats

Seules les variations de concentrations ioniques dont l'ordre de grandeur change significativement seront discutés, c'est-à-dire les résultats concernant les ions : Na^+ , K^+ , Ca^{2+} , Cl^- , NO_3^- et SO_4^{2-} . Les concentrations obtenues sont reportées dans les tableaux 13 à 15, pages 63-64. Les concentrations ioniques très proches avant et après dessalement ou trop proches de leur limite de détection ne peuvent pas être interprétées sur la base d'un seul prélèvement par étape et par emplacement.

En annexes (tableau 2, p.14-15) sont reportés les résultats obtenus pour les ions détectés trop rarement et/ou en trop faible quantités, soit : NH₄⁺, Mg²⁺, Al³⁺ et NO₂⁻. Trois tableaux récapitulent tous les SI, BI,

CE et pH des échantillons des mosaïques 8 et 7 et des planelles (cf. tableaux 10-12, p.62-63). Les valeurs des échantillons des mosaïques avant dessalement sont représentées sur un fond gris tandis que les données après dessalement se trouvent sur un fond blanc. Les valeurs qui ont particulièrement changé après dessalement sont données en couleur (rouge = augmentation ; vert = diminution).

Des graphes comparatifs des ions avant et après dessalement sont en annexes, pages 16 à 20, ainsi que des graphes présentant la corrélation entre la somme des ions et la conductivité électrice (et donc la qualité des résultats d'analyses), pages 9 à 12.

Prélèvement	SI [µg/g]	BI [µmoleq/g]	CE [µS/cm]	рН
M8_TPA	81	1	30	7,4
M8_PA1	9378	374	4974	12,1
M8_PA2	5554	228	3157	12,0
M8_PA3	1148	26	241	8,9
M8_TPF	85	-2	15	7,3
M8_PF1	8018	293	5408	12,0
M8_PF2	7008	273	5491	12,0
M8_PF3	1626	30	482	10,2
M8_TPB	332	2	59	6,8
M8_PB1	9340	6	845	7,90
M8_PB2	2271	2	335	8,26
M8_PB3	2021	12	275	8,22
M8_TSF	73	-1	16	7,3
M8_SF1	1313	16	310	7,64
M8_SF2	846	13	263	7,66
M8_SF3	771	16	264	8,00

Tableau 10 : SI, BI, CE et pH avant et après dessalement du mortier et des tesselles d la mosaïque n°8. ©HE-Arc CR, 2015.

Prélèvement	SI [µg/g]	BI [µmoleq/g]	CE [µS/cm]	рН
M7_PA1	2157	66	544	9,33
M7_PA2	2329	91	2283	11,8
M7_PA3	9651	467	5837	12,09
M7_PG1	396	14	143	9,2
M7_PG2	1256	57	1052	11,4
M7_PG3	1876	91	1958	11,6
M7_PB1	3682	107	911	10,56
M7_PB2	2332	68	719	11,03
M7_PB3	5955	280	3336	12,07
M7_SG1	538	19	170	9,24
M7_SG2	596	18	287	10,45
M7_SG3	810	.32	571	11 01

Tableau 11 : SI, BI, CE et pH avant et après le dessalement du mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015.

Prélèvement	SI [µg/g]	BI [µmoleq/g]	CE [µS/cm]	pН
AG00	70	2	69	8,3
AG0	917	-4	211	8,5
AG1	719	5	168	8,1
AG2	690	5	163	8,6
AG3	644	5	156	8,6
AG4	840	4	187	8,1
AG5	676	5	165	9,1
AG6	721	4	164	8,2
AG7	723	3	156	8,5
AG8	739	3	160	8,6
AKSF	105	3	20	6,27
AKSG	29	0	9	6,3
AKPF	129	4	22	6,35
AKPG	258	5	50	6,81

 Tableau 12 : SI, BI, CE et pH avant et après dessalement des planelles et sur des 4 compresses des mosaïques avant dessalement. ©HE-Arc CR, 2015.

[µmoleq/g]	Na+	K+	Ca ²⁺	Cl-	NO3⁻	SO4 ²⁻
M8_TPA	1,7	0,2	n.d.	0,4	n.d.	0,4
M8_PA1	33,0	3,7	361,2	11,3	12,3	0,9
M8_PA2	20,5	6,7	212,2	4,2	5,3	1,7
M8_PA3	17,7	4,7	10,9	1,4	1,4	4,0
M8_TPF	0,2	n.d.	n.d.	2,3	n.d.	n.d.
M8_PF1	15,5	4,3	297,1	13,2	8,9	9,4
M8_PF2	15,0	7,3	267,4	10,0	4,7	7,0
M8_PF3	24,7	5,1	12,8	1,7	0,8	10,3
M8_TPB	0,8	n.d.	5,7	0,4	n.d.	3,9
M8_PB1	29,5	3,1	106,7	2,9	3,7	126,3
M8_PB2	20,3	2,4	8,3	2,0	2,3	27,0
M8_PB3	26,0	2,0	8,2	1,9	2,0	20,4
M8_TSF	0,3	0,1	n.d.	1,6	n.d.	0,1
M8_SF1	9,9	1,6	18,7	1,0	n.d.	12,2
M8_SF2	19,1	1,6	n.d.	3,3	n.d.	4,8
M8_SF3	19,8	1,6	n.d.	0,6	n.d.	4,9
Limite dét. I	0,27	0,16	6,23	0,35	0,20	0,26
Limite dét II	0 14	0.09	3.32	0 19		0 14

Limite dét. II0,140,093,320,190,14Tableau 13 : Teneurs en ions avant et après dessalement du mortier et des tesselles d la mosaïque n°8. ©HE-Arc
CR, 2015.

[µmoleq/g]	Na⁺	K+	Ca ²⁺	Cl	NO ₃ -	SO4 ²⁻
M7_PA1	54,1	16,9	n.d.	0,7	1,1	3,0
M7_PA2	35,3	10,3	45,2	0,7	0,9	1,6
M7_PA3	8,4	5,1	455,8	0,7	0,8	0,4
M7_PG1	10,8	3,1	0,4	n.d.	0,1	0,2
M7_PG2	7,5	2,9	44,2	n.d.	0,5	0,4
M7_PG3	0,6	0,4	87,8	n.d.	0,6	0,3
M7_PB1	104,0	14,1	0,8	2,1	6,1	4,9
M7_PB2	46,8	11,4	14,8	1,8	4,2	3,0
M7_PB3	11,5	4,9	266,6	0,7	1,5	0,7
M7_SG1	13,6	3,2	3,0	n.d.	0,2	0,4
M7_SG2	11,9	2,9	1,8	0,4	0,8	1,3
M7_SG3	1,1	0,4	30,0	0,5	1,4	0,8
Limite dét. I	0,27	0,16	6,23	0,35	0,20	0,26
Limite dét. II	0,14	0,09	3,32	0,19		0,14

Tableau 14 : teneurs en ions avant et après dessalement du mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015.

[µmoleq/g]	Na+	K+	Ca ²⁺	Cl	NO3⁻	SO4 ²⁻
AG00	0,9	1,2	n.d.	n.d.	n.d.	n.d.
AG0	5,0	4,3	n.d.	1,5	1,2	10,6
AG1	3,5	2,8	7,1	0,9	0,3	7,0
AG2	3,9	2,9	6,0	0,7	0,4	6,7
AG3	3,2	2,8	6,0	0,6	0,4	6,2
AG4	4,1	3,2	7,2	0,7	0,6	8,6
AG5	3,3	2,8	6,3	0,7	0,5	6,4
AG6	3,6	2,8	6,5	0,8	0,4	7,2
AG7	3,5	2,7	5,5	0,7	0,6	7,6
AG8	3,5	2,7	5,6	0,7	0,5	8,0
AKSF	1,4	0,2	n.d.	0,6	n.d.	0,5
AKSG	0,7	n.d.	n.d.	0,4	n.d.	n.d.
AKPF	1,6	0,3	n.d.	0,8	n.d.	0,5
AKPG	4,2	0,6	n.d.	1,3	n.d.	1,3
Limite dét. I	0,27	0,16	6,23	0,35	0,20	0,26
Limite dét. Il	0,14	0.09	3.32	0.19		0.14

 Tableau 15 : Teneurs en ions des planelles avant et après dessalement et des compresses des mosaïques avant dessalement. ©HE-Arc CR, 2015.

7.1.1 Mosaïque n°8 (tesselles et mortier)

7.1.1.1 Comparaison entre M8_PA et M8_PF

La CE et la SI des solutions des prélèvements sont globalement plus élevés après dessalement (cf. tableau 10, p.62, M8_PA et M8_PF, chiffres rouges). Le BI des solutions est similaire. Le pH n'a significativement changé que pour la profondeur¹⁵¹ où elle est passée de 9 à 10. La CE obtenue pour la tesselle est dédoublée après dessalement (M8_TPA/M8_TPF).

Les concentrations des ions SO4²⁻ ont systématiquement augmentés après dessalement (cf. tableau 13, p.63, lignes M8_PA et M8_PF, chiffres rouges) : d'un facteur 10 en surface (de 0,9 à 9,4µmoleq/g), 4 au centre et 2,5 en profondeur.

Dans les tesselles, on observe une diminution de Na⁺ d'un facteur 9 (de 1,7 à 0,2 μ moleq/g) et une augmentation de Cl⁻ d'un facteur 6 (de 0,4 à 2,3 μ moleq/g) (M8_TPA/M8_TPF).

7.1.1.2 Comparaison entre M8_PB et M8_SF

La CE et la SI des solutions des prélèvements est plus basse après dessalement, surtout en surface où la CE qui diminue d'un facteur 2,5 (cf. tableau 10, p.62, M8_PB et M8_SF, chiffres verts). Toutefois, la différence de CE décroit en profondeur. La SI diminue d'un facteur 7 en surface (de 9340 à 1313µg/g) et environ 2,5 en profondeur. L'écart des pH a baissé légèrement et se situe entre 7,5 et 8 (avant 7,9 et 8,22). Le BI, en relation avec la SI, est resté similaire. La CE de la tesselle est passée de 59 à 16µS/cm (M8_TPB/M8_TSF).

Les ions Na⁺, Ca²⁺ et SO₄²⁻ ont diminué après le dessalement (cf. tableau 13, p.63, M8_PB et M8_SF, chiffres verts) :

- Na⁺ est 3 fois moins présent en surface (29,5 à 9,9 µmoleq/g).
- Ca²⁺ a diminué d'un facteur 6 en surface et a disparu en profondeur (106,7 à 18,7µmoleq/g).
- NO₃⁻ n'est plus détecté nulle part.
- SO4²⁻ a diminué d'un facteur 10 en surface (de 126,3 à 12,2µmoleq/g), 6 au centre et 4 en profondeur.

Dans la tesselle, Ca²⁺ n'est plus détecté, mais CI- a augmenté d'un facteur 4 (M8_TPB/M8_TSF).

7.1.2 Mosaïque n°7 (mortier de restauration)

7.1.2.1 Comparaison entre M7_PA et M7_PG

La CE des solutions des échantillons en surface et en profondeur après dessalement a diminué d'un facteur 3 et la SI a diminué d'un facteur 5 (de 9651 à 1876 µg/g) (cf. tableau 11, p.62, M7_PA et M7_PG, chiffres verts). Au centre, la CE et la SI ont diminué d'un facteur 2. Le pH des 2 premiers

¹⁵¹ Les échantillons associés à surface, centre et profondeur dans ce chapitre sont résumés dans le tableau 1, p.31.

prélèvements est similaire, mais le pH entre 4 et 6cm (M7_PA3/M7_PG3) est passé de 12,1 à 11,6. Le BI, en relation avec la SI, est resté similaire.

Les ions Na⁺, K⁺, Ca²⁺, Cl⁻, NO₃⁻ et SO₄²⁻ ont diminué (cf. tableau 14, p.64, M7_PA et M7_PG, chiffres verts) :

- Na⁺ a diminué d'un facteur 5 (de 54,1 à 10,8µmoleq/g) à 14, proportionnellement plus en profondeur qu'en surface.
- K⁺ a diminué d'un facteur 3 à 10 (de 16,9 à 3,1µmoleq/g), proportionnellement plus en profondeur qu'en surface.
- Ca²⁺ a diminué d'un facteur 5 en profondeur (de 455,8 à 87,8µmoleq/g).
- Cl⁻ n'est plus détecté.
- NO₃⁻ n'est plus détecté en surface.
- SO₄²⁻ a diminué d'un facteur 15 (de 3 à 0,2µmoleq/g) en surface et 4 au centre.

7.1.2.2 Comparaison entre M7_PB et M7_SG

La CE des solutions des échantillons après dessalement a diminué d'un facteur 5 en surface et en profondeur et d'un facteur 2,5 au centre (cf. tableau 11, p.62, M7_PB et M7_SG, chiffres verts). Les pH ont baissé, passant d'un écart entre 10,56 et 12,07 à un écart entre 9,24 et 11,01. Le BI, en relation avec la SI, est resté similaire.

Les ions Na⁺, K⁺, Ca²⁺, Cl⁻, NO₃⁻ et SO₄²⁻ ont diminué (cf. tableau 14, p.64, M7_PB et M7_SG, chiffres verts) :

- Na⁺ a diminué d'un facteur 10 en surface (104 à 13,6µmoleq/g) et en profondeur et d'un facteur
 4 au centre.
- K⁺ a diminué d'un facteur 4 à 10, proportionnellement plus en profondeur qu'en surface (14,1 à 3,2µmoleq/g).
- Ca²⁺ a diminué d'un facteur 7 au centre et d'un facteur 9 en profondeur (de 266,6 à 30 μ moleq/g).
- Cl⁻ n'est plus détecté en surface et a diminué d'un facteur 4 au centre (de 1,8 à 0,4µmoleq/g).
- NO₃⁻ a diminué d'un facteur 30 en surface (de 6,1 à 0,2µmoleq/g) et 5 au centre.
- SO_4^{2-} a diminué d'un facteur 12 en surface (de 4,9 à 0,4µmoleq/g) et 2 au centre.

7.1.3 Planelles

La CE de la solution de l'échantillon AGO (salée) est supérieure de 23 à 55 µS/cm aux CE des planelles dessalées (AG1-AG8) : la conductivité la plus élevée est à 187 (AG4), alors que la conductivité la plus basse est à 156 (AG6). Les pH sont tous situés entre 8,1 et 9,1. Finalement, les BI sont tous bien équilibrés (cf. tableau 12, p.63, AG0 à AG8).

La légère augmentation des ions entre AG00 (non-salée) et AG0 (salée), démontre que les bains de sels n'ont pas suffisamment imprégnés les planelles (cf. tableau 15, p.64, AG0 et AG00).

Néanmoins, les analyses après dessalement montrent que tous les ions diminuent entre AG0 et AG1-8, sauf Ca²⁺ qui n'est pas observé en AG0. Tous les résultats des ions obtenus sont extrêmement proches les uns des autres (AG1-AG8).

7.2 Interprétation

7.2.1 Mosaïque n°8 (tesselles et mortier)

Le prélèvement M8_PF présente une augmentation de la teneur en ions par rapport à M8_PA. Les compresses AKPF ont été appliquées sur une zone dont les tesselles ont été réintégrées à l'aide d'un matériau de restauration (ciment ou chaux hydraulique). Lors de la prise de ces matériaux, de l'hydroxyde de calcium (Ca(OH)₂) est formé. Ce composant soluble¹⁵² est présent en quantité considérable dans ce type de matériau, sans pour autant avoir un rôle important dans la solidité du matériau.¹⁵³ Les compresses, qui ont augmenté en CE¹⁵⁴, ont donc probablement dissout du Ca(OH)₂ des mortiers de restauration. Les autres ions n'ont apparemment pas pu être réduits. On ne peut donc pas faire de déduction plus avant sur l'efficacité de cette compresse.

Le prélèvement M8_SF montre une diminution conséquente des ions Ca⁺ et SO₄²⁻par rapport à M8_PB. Le dessalement est donc effectif, car il permet de diminuer la quantité des ions formant des sulfates de calcium et de sodium, qui sont les deux principaux sels à risque pour les mosaïques sur ce substrat.

7.2.2 Mosaïque n°7 (mortier de restauration)

Les deux prélèvements M7_PG et M7_SG présentent une diminution considérable des ions Na⁺ K⁺ Ca²⁺ et SO₄²⁻ par rapport à M7_PA et M7_PB. Ces deux compresses sont donc effectives pour retirer les ions formant les sels sulfates de calcium et de sodium sur ce substrat.

7.2.3 Planelles

Les teneurs en calcium mesurées dans AGO plus basses que dans les planelles dessalées semblent montrer que peut-être AGO n'est pas représentatif. La différence de teneurs en Ca2+ ne peut pas provenir des compresses, car celles-ci n'en contiennent pas (cf. tableau 2, p.14, AKSF/AKPF/AKSG/AKPG).

 $^{^{152}}$ Solubilité : 0°C = 0,185g pour 100ml d'eau, et à 100°C = 0,077g pour 100ml d'eau. Il est donc aussi soluble que le gypse (0,2g/100ml). Weast, 1983, p.B-79.

¹⁵³ Information orale de Christine Bläuer, docteur en minéralogie, en juillet 2015 à Fribourg. P.B-79.

¹⁵⁴ Cf. Annexes tableau 4, p.24.

On ne peut donc pas savoir à quel point les compresses ont dessalé leurs planelles AG1 à AG8. Les résultats ne peuvent pas être comparés entre eux ni avec la mosaïque.

Toutefois les CE des extractions des matériaux des planelles après dessalements sont tous plus bas qu'ils n'étaient avant le dessalement.

Les résultats montrent clairement que la méthode de salage des planelles n'a pas été suffisamment effective. Une autre méthode devrait être développée pour saler un substrat à la porosité si fine.

Discussion

Malgré le pic maximal de rayons d'accès aux pores du lit de pose et du nucleus plus microporeux (0.21µm, mosaïque n°8) que la compresse AKSF (0.91 µm), celle-ci s'est avérée efficace pour un dessalement des ions à risque. Le volume de porosité totale de la compresse (53,9%), supérieur au substrat (41.5, 45.7 et 4.5%) a probablement favorisé le processus de dessalement. Les compresses à charge minérale faible, AKSF et AKPF, ont de bonnes propriétés concernant l'ouvrabilité, excepté pour leur teneur en eau supérieure aux compresses plus chargées en sable ou perlite (AKSG et AKPG) et les microorganismes. Pour ce dernier point, un dessalement en hiver limiterait sûrement leur apparition, et les basses températures¹⁵⁵ limiteraient les risques d'un séchage accéléré par la montée de température (et donc un changement de la compresse plus rapide).

Les compresses AKSG et AKPG, malgré leurs pics de rayons d'accès aux pores plus macroporeux (AKSG : 9.1µm et AKPG : 4.5 et 1.7µm) que le mortier de restauration (3.9 et 0.2µm, mosaïque n°7), se sont avérées efficientes pour le dessalement, probablement en partie à cause de leur volume de porosité supérieur (AKSG : 56.7%, AKPG : 69% et porosité totale du mortier de restauration : 25.6%). Elles manquent toutefois beaucoup de cohésion, en plus AKSG est très dense. Il semble inadéquat d'utiliser cette dernière, quel que soit le substrat. La proportion de kaolin et/ou de cellulose devrait être augmentée. La compresse AKPG, avec sa proportion supérieure en kaolin, semble plus adaptée. Une recherche plus approfondie sur les proportions de charge minérale dans les compresses bimodale devrait être développée : la grande proportion de ces charges diminue la présence de microorganismes et la teneur en eau et permet d'obtenir des compresses bimodales, mais elle provoque rapidement un manque de cohésion de la compresse.

Ces recherches n'ont pas permis de faire une comparaison très poussée sur l'efficacité de dessalement de la perlite par rapport au sable de quartz, d'une part par la différence des substrats et de leurs teneur en ions dans les mosaïques et d'autre part par le salage trop faible des planelles. Toutefois, nous

¹⁵⁵ Qui soient supérieures à 0°C.

pouvons constater que : la perlite par rapport au sable diminue la densité de la compresse mais augmente légèrement sa teneur en eau pour la perlite fine et le risque d'apparition de microorganismes.

Au vu des résultats obtenus, il semble préférable de ne pas utiliser les compresses à deux composants (kaolin et charge minérale), qui manquent cruellement de cohésion, limitant ainsi leur adhésion au substrat, ce qui empêche un bon transfert capillaire entre la compresse et le matériau à dessaler. De plus elles sont globalement difficiles à retirer après un dessalement, et laissent de nombreux résidus. Les compresses à trois composants (kaolin, cellulose et charge minérale), malgré l'augmentation de teneur en eau et d'apparition de microogranismes, présentent de meilleures propriétés d'adhésion et se laissent retirer plus facilement. Et le nettoyage nécessaire après le dessalement avec ces compresses est moins laborieux.

Durant ce travail, nous avons constaté que le papier japon fait parfois lui-même office de substrat pour des microorganismes lorsque les compresses sont exposées à ce climat spécifique (20°C et 85% HR) pendant environ 1 mois. Pour les compresses nécessitant une aussi longue application, il serait judicieux de faire des recherches sur d'autres types d'interface moins propice à l'apparition de microorganismes sans influence sur la porosité des compresses. Par ailleurs, nous ne savons pas dans quelle mesure ce papier influe sur l'interaction entre le substrat et la compresse, même dans le cas où l'adhésion entre ceux-ci est optimale. Finalement, les publications sur des restaurations où des compresses ont été appliquées ne citent pas la densité du papier japon utilisé comme interface. Dans notre cas, nous avons constaté qu'un papier japon de 9g/m² n'est pas adapté, car il se déchire très facilement, même lorsqu'il est doublé. Quelle serait la densité du papier japon idéale pour un substrat en relief tel qu'une mosaïque ?
Conclusion générale

Les compresses appliquées sur le mortier de restauration de la mosaïque n°7 se sont avérées efficaces pour le retrait des ions à risque sur la profondeur analysée. Mais le retrait des résidus de compresse nécessite un nettoyage à base d'eau sous pression (airbrush) pour ne pas altérer la surface. Ce traitement risque de transporter les sels résiduels en profondeur du matériau ou dans de nouvelles zones (murs, mosaïque), de créer de nouveaux équilibres chimiques et l'apparition de nouvelles efflorescences. Sachant que c'est un mortier qui, par sa teneur en sels, est une source d'altération de la mosaïque, est-il plus adéquat de faire un dessalement suivi d'un nettoyage à l'eau ou de retirer le mortier de restauration qui est autour de la mosaïque, intervention impliquant des vibrations et de nombreux autres risques ? Son remplacement par mortier dont la porosité est étudiée pour permettre aux sels de cristalliser sans créer de dommages ou limiter au maximum la migration des sels vers la mosaïque peut-il être envisagé ?

Concernant la mosaïque n°8, la compresse AKSF s'est avérée efficace pour le retrait des ions à risque dans la profondeur analysée. Toutefois, nous avons pu constater que certaines zones restaurées, notamment dans la zone de prélèvement des échantillons M8_PA et M8_PF, contiennent peut-être trop de ions solubles pour permettre un dessalement efficace.

Par ailleurs, une surveillance régulière des mosaïques doit être impérativement établie afin de vérifier si ces tests sont efficients et si la réapparition d'efflorescences a cessé : dans les zones dessalées, dans de nouvelles zones, durant des périodes habituellement sans cristallisations (fin du printemps-début hiver) et/ou par de nouveaux composés salins.

Concernant les deux mosaïques, les murs des pavillons doivent être isolés avant d'envisager un dessalement, afin d'éviter la reformation du processus d'assèchement de la surface des mosaïques ayant cours en hiver, et de cristallisation des sels. Des tests de dessalement après l'isolation pourraient être réalisés in situ et/ou sur les planelles, si une méthode plus probante de salage est mise en œuvre. Une intervention de restauration telle que le dessalement ne peut être efficace à long terme si les mesures de conservation préventive nécessaires ne sont pas entreprises avant la restauration.

Références bibliographiques

Alberti *et al.*, **2011 :** Alberti, Livia *et al. Glossaire illustré : Formation de techniciens à l'entretien des mosaïques in situ.* Getty Conservation Institute et Institut National du Patrimoine de Tunis, Los Angeles et Tunis, 2011.

Arnold and Zehnder, 1991 : Arnold, Andreas et Zehnder, Konrad. « Monitoring wall paintings affected by soluble salts ». In Cather, Sharon (éd.). *The Conservation of Wall Paintings. Proceedings of a symposium organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, July 13-16, 1987.* GCI, Los Angeles, 1991, p.103-135.

BEI Energétique et Procédés, 2015 [en ligne] : BEI Energétique et Procédés [En ligne]. Bureaud'EtudesIndustrielles,2015 [consultéle2juillet2015].http://hmf.enseeiht.fr/travaux/bei/beiep/content/g21/i-phenomene-convection

Bläuer Boehm, 2005 : Bläuer Boehm, Christine.« Quantitative salt analysis in conservation of buildings ». *Restoration of Buildings and Monuments*, vol. 11, n°6, 2005, p.1–10.

Bläuer et Rousset, 2009 : Bläuer, Christine et Rousset, Bénédicte. « Mesures in situ non destructives de la teneur en eau des matériaux de construction pierreux ». In *Conservation préventive - pratique dans le domaine du patrimoine bâti", Acte du colloque SCR/SKR, Fribourg, 3-4 septembre 2009.* SCR/SKR, Fribourg, 2009, p.70-78.

Bläuer et Rousset, 2014 : Bläuer, Christine et Rousset, Bénédicte. *Salt sources revisited*. Third International Conference on Salt Weatering of Buildings and Stone Sculptures, Brussels, 14-16 October 2014, *non-publié*.

Brau, 2009 : Brau, Jean. *Transferts de Chaleur et de Masse*. INSA de Lyon – Département Génie Civil et Urbanisme, Lyon, 2009.

Bourgès et Vergès-Belmin, 2013 : Bourgès, Ann et Vergès-Belmin, Véronique. « Practical advice regarding consistency and working properties of poultices ». In Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buidlings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.49-53.

Bourguignon, 2009 : Bourguignon, Elsa Sophie Odile. *Dessalement de matériaux poreux modèles par la méthode des compresses*. Ecole des Ponts ParisTech, Paris, 2009.

Bruneau, 1987 : Bruneau, Philippe. La Mosaïque Antique. Presses de l'Université de Paris-Sorbonne, Paris, 1987. Collection Lectures en Sorbonne.

Charola, 2000 : Charola, Elena A. Salts in the Deterioration of Porous Materials : an Overview. Journal of the Amercian Institute for Conservation, vol. 39, n°3, 2000, p.327-343.

Evans Analytical Group, **2015 [en ligne] :** *Evans Analytical Group* [En ligne]. EAG Inc., 2015 [consulté le 2 juillet 2015]. <u>http://www.eaglabs.fr/cm/icp-oes-ms.html</u>

Félix, 1996 : Félix, Claude. *Examen pétrographique*. Analyse pétrographique des tesselles d'Orbe-Boscéaz, EPFL, Lausanne, 1996, *non-publié*.

Flandes-analyses, **2015** [en ligne] : *Flandes-analyses* [En ligne]. Flandres analyses, 2015 [consulté le 3 juillet 2015]. <u>http://www.flandres-analyses.com/fiches-analyses/icpaes-spectrometrie-demission-atomique-plasma-couple-par-induction/</u>

Flutsch et al., 1997 : Flutsch, Laurent, Castella, Catherine May et Paratte, Claude-Alain. *Guides archéologiques de la Suisse 5 : La villa gallo-romaine d'Orbe-Boscéaz et ses mosaïques.* Fondation Pro Urba et Société suisse de préhistoire et d'archéologie, Orbe, 1997.

Franzen *et al.,* **2013 :** Franzen, Christoph, Hoferick, Frank, Laue, Steffen, et Siedel, Heiner. « Water bath desalination followed by poultice treatment ». In Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buildings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.74-78.

Girardet, 2005 : Girardet, Fred. *Orbe-Bosceaz 04204 – Analyse des dépôts blancs-sels.* Analyses microscopiques et microchimiques d'efflorescences de sels, EPFL, Lausanne, 2005, *non-publié.*

Heritage and Zezza, 2013 : Heritage Alison, Heritage Adrian and Zezza, Fulvio (éd.). Desalination of historic Buildings, Stone and Wall Paintings. Archetype Publications, London, 2013.

Homand et Duffaut, 2000 : Homand, Françoise et Duffaut, Pierre (coord.). *Manuel de Mécanique des Roches. Tome I : Fondements.* Les Presses de l'Ecole des Mines, Paris, 2000.

Illes, 2004 : Illes, Véronique. Guide de manipulation des collections. Somogy éd. d'art, Paris, 2004.

Instruments Horaires Moineau, **2015 [en ligne] :** *Instruments Horaires Moineau* [En ligne]. IHM, 2015 [consulté le 3 juillet 2015]. <u>http://www.moineau-instruments.com/content/28-humidite-point-de-rosee-temperature-humide</u>

Krieg, 2005 : Krieg, Myriam. *ORBE-Bosceaz, bilan des analyses*. Récapitulation des prélèvements d'efflorescences sur les mosaïques n°1 et 7, Avenches, 2005, *non-publié*.

LAROUSSE, 2015 [en ligne] : *LAROUSSE* [En ligne]. Larousse, 2015 [consulté le 5 juillet 2015]. http://www.larousse.fr/dictionnaires/francais/spectrom%C3%A8tre/74104

Lavagne, 1987 : Lavagne, Henri. La mosaïque. PUF, Paris, 1987. Collection Que sais-je? n°230.

Le Roy, 1868 : Le Roy, F.-N. *Une visite aux mosaïques romaines d'Orbe (Vaud-Suisse*). Cherbuliez, Genève, 1868.

Lubelli *et al.*, **2013**: Lubelli, Barbara, van Hees, Rob P.J. and Hilbert, Georg. « Desalination of masonry structures : research towards the development of a modular system of poultices ». In Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buildings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.54-61.

Lubelli et van Hees, 2013 : Lubelli, Barbara et van Hees, Rob P.J."Desalination of historical masonry". Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buildings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.122-129.

Menguy, **2015** [en ligne] : Menguy, L.. « Diffusion de particules ». In *Sciences Physiques – élèves de math spé PSI*, 2015 [En ligne]. Lycée de Montesquieu, 2015 [consulté le 3 juillet 2015]. http://www.cpge.eu/documents/presentations/diffusion-particules.pdf

Maubourguet, 1993 : Maubourguet, Patrice (éd.). *Le Petit Larousse grand format*. Editions françaises Inc., Paris, 1993.

Oxford Dictionaries, **2015 [en ligne] :** *Oxford Dictionaries* [En ligne]. Oxford University Press, 2015 [consulté le 3 juillet 2015]. <u>http://www.oxforddictionaries.com/fr/definition/anglais_americain/analyte</u>

Pel *et al.***, 2013 :** Pel, Leo, Heritage, Alison et Voronina, Victoria.« Physical principles affectiong the efficiency of salt extraction by poulticing ». In Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buildings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.54-61.

Protz et Wolter, 2004 : Protz, Adreas et Wolter, Heike. « Entsalzung einer Musterfläche in der Franziskaner-Klosterkirche: Teil I. Denkmalplfege ». *ARCONIS: Wissen zum Planen und Bauen*, Vol 9, n°2, 2004, p.4-7.

Rodriguez-Navarro et Doehne, 1999 : Rodriguez-Navarro, Carlos et Doehne, Eric. « Salt weatering : influence of evaporation rate, supersaturation and cyrstallisation pattern ». *Earth Surface, Processes and Landforms*, vol. 24, p.191-209.

Rousset Tournier, 2001 : Rousset Tournier, Bénédicte. Transferts par capillarité et évaporation dans des roches : rôle des structures de porosité. Strasbourg I – Université Louis Pasteur (CNRS), Strasbourg, 2001.

Sawdy *et al.*, **2008**: Sawdy, A., Heritage, Alisan et Pel, L. « A review of salt transport in porous media, assessment methods and salt reduction treatments ». In SBWSS. *First International Conference on Salt Weathering of Buildings and Stone Sculptures, Copenhagen, September 2008.* Technical University of Denmark, Copenhagen, 2008, p.1-28.

Stefanaggi, 2001 : Stefanaggi, Marcel (coord.). *Préserver les objets de son patrimoine : précis de conservation préventive. SFIIC*. MADRAGA, Liège, 2001.

Terrapon, 2013 : Terrapon, Noé. *Orbe Boscéaz – Mosaïque 8, dite « aux divinités » / Pavillon IV – Rapport d'intervention 2013*. Constats sur la climatisation de la mosaïque n°8 et rapport d'intervention pour des injections de mortier, Avenches, 2013, *non-publié*.

Tsui *et al.,* **2003** : Tsui, Nicolas, Flatt, Robert J. et Scherer, Gerorge W. « Crystallization damage by sodium sulfate ». *Journal of Cultural Heritage*, 4, 2003, p.109-115.

Ministère de la culture et de la communication, 2003 : Ministère de la culture et de la communication. *Ouvrages en pierre de taille: fascicule technique, cahier des clauses techniques particulières, mode de mètre et bordereau de prix unitaire.* Sous-direction des monuments historiques – Mission études et travaux, Paris, 2003.

Vergès-Belmin *et al.,* **2013** : Vergès-Belmin Véronique, Heritage Alison et Bourgès, Anne. « Powdered cellulose poultices in stone and wall painting conservation. In Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buildings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.54-61.

Viehweger, 2002 : Viehweger, Kai Henning (éd.). *Introduction à la pratique de la chromatographie ionique*. Metrohm SA, Herisau, 2002.

Weast, 1983 : Weast, R. C. E.. *Handbook of chemistry and physics*. 64th Edition (1983). CRC Press, Cleveland, 1983.

Webb, 2001 : Webb, Paul A. *An Introduction To The Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis On Reduction And Presentation of Experimental Data.* Micromeritics Instrument Corporation, Norcross, 2001.

Weidmann, 1987 : Weidmann, Denis. « Problèmes de gestion et de conservation des mosaïques d'Orbe –Boscéaz (Vaud-Suisse), abritées depuis 1841 ». In ICCM. *Conservacion « in situ », IVth Conference of the International Committee for the Conservation of Mosaics, Soria, 1986.* Diputación Provincial de Soria : Instituto de Conservación y Restauración de Bienes Culturales, Soria, 1987, p.7-17.

Weidmann, 2007 : Weidmann, Denis. « Orbe-Boscéaz (Canton de Vaud, Suisse) 1975-2005 : 30 ans de réflexions sur la conservation d'anciennes et de nouvelles mosaïques ». In Ben Abed, Aïcha *et al.* (ed.). *Lessons Learned : reflecting on the Theory and Practice of Mosaïc Conservation. 9th Conference of the International Committee for the Conservation of Mosaics, Hammamet, Tunisia, Novembre 29 – December 3.* Getty Publications, Los Angeles, 2007, p.46-50.

Weidmann *et al.,* **2003** : Weidmann, Denis, Flatt, Robert, Félix, Claude, Girardet, Fred et Glauser, André. « Analyse des altérations et déformations de mosaïques à Orbe-Boscéaz (Canton de Vaud, Suisse) ». In Demetrios, Michaelides (ed.). *Mosaics make a site : The conservation in situ of Mosaics on Archaeological Sites. Proceedings of the VIth International Conference of the International Committee for the Conservation of Mosaics, Nikosia, Cyprus, 1996. ICCM, Rome, 2003, p.169-184.*

Weidmann *et al.,* **2008 :** Weidmann, Denis, Fischbacher, Verena et Girardet, Fred. *Etapes documentaires d'un pogramme de conservation.* 10^{eme} conférence du Comité International pour la Conservation des Mosaïques (ICCM), Palerme, 2008, *non-publié.*

Weidmann et Girardet, 2005 : Weidmann, Denis et Girardet, Fred. « Contrôle Climatique de Mosaïques *in situ* sous Abris ». In Bakirtzis, Charalambos (ed.). *Wall and Floor Mosaïcs : Conservation, Maintenance, Presentation. VIIIth Conference of the InternationI Committee for the Conservation of Mosaics, Thessaloniki, 29 October – 3 November 2002.* European Center of Byzantine and Post-Byzantine Monuments, Thessaloniki, 2005, p.359-366.

Zezza, 2013 : Zezza, Fulvio. « The desalination project ». In Heritage, Alison, Heritage Adrian and Zezza, Fulvio (éd.). *Desalination of Historic Buildings, Stone and Wall Paintings*. Archetype Publications, London, 2013, p.1-7.

Liste des figures

Figure 1 : Reconstitution hypothétique du palais d'Orbe-Boscéaz. ©IASA, 2004
Figure 2 : Plan du pavillon et de la répartition des mosaïques. Carré rouge à gauche = Mosaïque n°8,
Carré rouge de droite = Mosaïque n°7. ©Etat de Vaud - Aventicum, 2013
Figure 3 : Stratigraphie d'une mosaïque. ©Alberti et al., 2011, p.2
Figure 4 : Mosaïque n°8 dite « aux divinités ». ©Etat de Vaud – Aventicum, 2013
Figure 5 : Mosaïque n°7 dite « aux carrés et losanges ». ©Etat de Vaud – Aventicum, 2013
Figure 6 : Schéma de l'installation climatique avant sa modification. Désormais, la ventilation équilibre
uniquement l'air des tranchées intérieures avec l'air les locaux et n'est plus en contact avec l'air
extérieur. ©Weidmann et Girardet, 2005, p.36523
Figure 7 : Coupe mince au travers d'un échantillon de tesselles. Fissuration des calcaires sombres
altrérés et résidus de jointoyage. Weidmann et al., 2003, p.179
Figure 8 : Mosaïque n°8 avec : en bleu clair les détachements déduits par control acoustique, en rouge
les injections de mortiers qui ont été faites dans les détachements et en bleu foncé l'emplacement
approximatif de la tache d'humidité (car varie en dimensions). Au-dessus de cette zone, on observe
la présence d'une lacune. ©Etat de Vaud, Aventicum, 2013
Figure 9 : Emplacement de la tache d'humidité de la mosaïque n°8 (partiellement délimitée par des
flèches bleues). ©HE-Arc CR, 2015
Figure 10 : Emplacement de la tache d'humidité de la mosaïque n°7 (partiellement délimitée par des
flèches bleues). ©Etat de Vaud, Aventicum, 2013
Figure 11 : Whiskers observés en surface de la mosaïque n°8 (dans le carré vert). ©HE-Arc CR, 2015.
Figure 12 : Voile blanc observé sur le mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015.
Figure 13 : Whiskers observés en surface de la mosaïque n°8. ©Etat de Vaud, Aventicum, 2013 27
Figure 14 : Croûte observée sur le mortier de restauration de la mosaïque n°7. ©HE-Arc CR, 2015 27
Figure 15 : Graphique des stades d'hydratation et de solubilité de la thénardite en fonction de HR et T.
© <i>Tsui</i> et al., <i>2003, p.110</i>
Figure 16 : Schéma des mouvements d'air dans les pavillons en hiver. ©HE-Arc CR, 2015
Figure 17 : Prélèvement M8_PB. ©HE-Arc CR, 2015
Figure 18 : Prélèvement M8_PA. ©HE-Arc CR, 2015
Figure 19: Emplacement des prélèvements M7_PB (gauche) et M7_PA (droite). ©HE-Arc CR, 2015. 32
Figure 20 : Réactions entre la phase stationnaire, l'éluant et l'analyte durant leur passage dans la
colonne. Viehwenger, 2002, p.18
Figure 21 : Evolution de la proportion des charges ioniques des matériaux testés dans une solution
durant environ une semaine. ©HE-Arc CR, 2015

HE-Arc CR, Master of Arts HES-SO in Conservation-restoration Barbezat Nadège, Dessalement de deux mosaïques d'Orbe-Boscéaz par application de compresses, 20.07.2015

Figure 22 : Répartition des rayons d'accès du lit de pose. ©CNRS, 2015	45
Figure 23 : Répartition des rayons d'accès du nucleus. ©CNRS, 2015	45
Figure 24 : Répartition des rayons d'accès du mortier de restauration. ©CNRS, 2015	45
Figure 25 : Répartition des rayons d'accès des planelles. ©CNRS, 2015	45
Figure 26 : Répartition des rayons d'accès du kaolin et de la bentonite. ©Lubelli et al., 201	3, p.57 47
Figure 27 : ©Répartition des rayons d'accès de deux types de pulpe de cellulose. Lubelli e	et al., 2013,
p.57	47
Figure 28 : Répartition des rayons d'accès de sable fin et grossier. ©Lubelli et al., 2013, p.	56 47
Figure 29 : Répartition des rayons d'accès d'AKSF. ©CNRS, 2015	48
Figure 30 : Répartition des rayons d'accès d'AKPF. ©CNRS, 2015	48
Figure 31 : Répartition des rayons d'accès d'AKSG1. ©Lubelli et al., 2013, p.59	48
Figure 32 : Répartition des rayons d'accès d'AKSG. ©CNRS, 2015	49
Figure 33 : Répartition des rayons d'accès d'AKPF. ©CNRS, 2015	49
Figure 34 : Répartition des rayons d'accès d'AKSF1. ©CNRS, 2015	51
Figure 35 : Répartition des rayons d'accès d'AKSG1. ©Lubelli et al., 2013, p.59	51
Figure 36 : Répartition des rayons d'accès d'AKPF1. ©CNRS, 2015	51
Figure 37 : Répartition des rayons d'accès d'AKPF3. ©CNRS, 2015	51
Figure 38 : Répartition des rayons d'accès de KSG1. ©Lubelli et al., 2013, p.57	51
Figure 39 : Répartition des rayons d'accès de KSF1. ©Lubelli et al., 2013, p.57	51
Figure 40 : Répartition des rayons d'accès de KPF1. ©CNRS, 2015	52
Figure 41 : Répartition des rayons d'accès de KPF3. ©CNRS, 2015	52
Figure 42 : Etat du mortier de restauration lors du retrait des compresses. A gauche, le p	apier japon
n'est pas encore entièrement retiré et forme une couche de cellulose et de kaolin.	A droite, le
papier japon a presque été entièrement retiré. Un meilleur résultat que celui de gau	che ne peut
pas être obtenu sans un nettoyage à l'eau sous pression. ©HE-Arc CR, 2015	57
Figure 43 : Compresse AKSG1 après application. ©HE-Arc CR, 2015	58
Figure 44 : Compresse AKSF1 après application. ©HE-Arc CR, 2015	58
Figure 45 : Compresse AKPF1 après application. ©HE-Arc CR, 2015	58
Figure 46 : Compresse AKPF3 après application. ©HE-Arc CR, 2015	58
Figure 47 : Compresse KSG1 après application. ©HE-Arc CR, 2015	59
Figure 48 : Compresse KSF1 après application. ©HE-Arc CR, 2015	59
Figure 49 : Compresse KPF1 après application. ©HE-Arc CR, 2015	59
Figure 50 : Compresse KPF3 après application. ©HE-Arc CR, 2015	59

Liste des tableaux

Tableau 1 : Récapitulation des répartitions en profondeur de chaque échantillon. ©HE-Arc CR, 2015.
Tableau 2 : Quantité de sels pour chaque bain d'eau déminéralisée (2I). ©HE-Arc CR, 2015 40
Tableau 3 : Nom, composition et proportion des compresses pour la mosaïque n°8. ©HE-Arc CR, 2015.
Tableau 4 : Nom, Composition et proportions des compresses pour le mortier de restauration de la
mosaïque n°7. ©HE-Arc CR, 2015 49
Tableau 5 : Tableau récapitulatif du nom, de la composition et des proportions des 8 compresses testées
sur les planelles. ©HE-Arc CR, 201550
Tableau 6 : Récapitulation des porosités totales connues et des pics de rayons d'accès aux pores. ©HE-
Arc CR, 2015
Tableau 7 : Récapitulation des proportions des compresses appliquées sur les mosaïques n°7 et 8. ©HE-
Arc CR, 2015
Tableau 8 : Récapitulation des proportions des compresses appliquées sur les planelles. ©HE-Arc CR,
2015
Tableau 9 : Récapitulation de l'appréciation des compresses selon plusieurs critères d'utilisation. ©HE-
Arc CR, 2015
Tableau 10 : SI, BI, CE et pH avant et après dessalement du mortier et des tesselles d la mosaïque n°8.
©HE-Arc CR, 2015
Tableau 11 : SI, BI, CE et pH avant et après le dessalement du mortier de restauration de la mosaïque
n°7. ©HE-Arc CR, 2015
Tableau 12 : SI, BI, CE et pH avant et après dessalement des planelles et sur des 4 compresses des
mosaïques avant dessalement. ©HE-Arc CR, 201563
Tableau 13 : Teneurs en ions avant et après dessalement du mortier et des tesselles d la mosaïque n°8.
©HE-Arc CR, 2015
Tableau 14 : teneurs en ions avant et après dessalement du mortier de restauration de la mosaïque
n°7. ©HE-Arc CR, 2015
Tableau 15 : Teneurs en ions des planelles avant et après dessalement et des compresses des
mosaïques avant dessalement. ©HE-Arc CR, 201564

Liste des abréviations et des sigles

- BI : Bilan ionique
- **CE :** Conductivité électrique
- **CEN :** Conductivité électrique normalisée
- **CI**: Chromatographie ionique
- HA : Humidité absolue
- HR : Humidité relative
- HRE : humidité relative d'équilibre
- ICP-OES : Spectrométrie d'émission optique avec plasma à couplage inductif
- SI : Somme des ions
- T: Température
- µg/g : microgrammes par grammes
- µmoleq/g : micromoles équivalences par grammes
- **µS/cm :** microSiemens par centimètres

Lexique

Analyte : « Substance dont les constituants chimiques vont être identifiés et mesurés¹⁵⁶. »

Bilan ionique : Différence de charges entre les cations et les anions.

Conductivité électrique : Unité de mesure en µS/cm, elle caractértise la conductivité d'une substance¹⁵⁷.

Hygroscopique : « Capacité d'un matériau à absorber ou à céder facilement de l'eau¹⁵⁸. »

Humidité absolue : Quantité d'eau maximale que l'air peut contenir en fonction de la pression et de la température. Son unité de mesure est en g/m³¹⁵⁹.

Humidité relative : Rapport entre la pression partielle de vapeur d'eau et la pression de saturation de la vapeur d'eau. L'unité de mesure de l'humidité relative est en %¹⁶⁰.

Nébuliser : « Projeter un liquide en fines goutelettes à l'aide d'un nébuliseur¹⁶¹. »

pH : Unité de mesure indiquant « la concentration de ions H+, et donc l'acidité d'une solution. [...] Une solution neutre a un pH de 7, elle est acide en-dessous (1 à 7), basique au-dessus (7 à 14)¹⁶². »

Plasma : « Fluide composé de molécules gazeuses, d'ions et d'électrons¹⁶³ . »

Point de rosée : température à laquelle l'humidité absolue de l'air est égale à la saturation (100% HR) ¹⁶⁴.

- ¹⁵⁹ Instruments Horaires Moineau, 2015 [en ligne].
- ¹⁶⁰ Ibidem.
- ¹⁶¹ Maubourguet, 1993, p.692.
- 162 Stefanaggi, 2001, p.256.
- ¹⁶³ Maubourguet, 1993, p.790.
- ¹⁶⁴ Instruments Horaires Moineau, 2015 [en ligne].

¹⁵⁶ Oxford Dictionaries, 2015 [en ligne].

¹⁵⁷ Maubourguet, 1993, p.256.

¹⁵⁸ Illes, 2004, p.107.

Spectromètre : « Appareil destiné à la mesure de la répartition d'un rayonnement complexe en fonction de la longueur d'onde ou de la fréquence s'il s'agit d'ondes, de la masse ou de l'énergie des particules individuelles s'il s'agit de particules¹⁶⁵. »

Unimodal/bimodal/trimodal : qui présente un, deux ou trois pics de rayons d'accès aux pores principaux¹⁶⁶.

µg : Unité de mesure, qui est égale à 1 x 10-9 kilogrammes ou 0,000001 grammes.

µmoleq/g: Concentration indiquant le nombre de micromoles par grammes.

µS/cm : Unité de mesure de la conductivité électrique (CE).

¹⁶⁵ LAROUSSE, 2015 [en ligne].

¹⁶⁶ Communication orale de Bénédicte Rousset, docteur en pétrophysique, le 7 juillet 2015, au CSC Sàrl, Route de Baumont 3, 1700 Fribourg.

Dessalement de deux mosaïques d'Orbe-Boscéaz par application de compresses

Annexes

Mémoire présenté par :

Nadège Barbezat

Pour l'obtention du

Master of Arts HES-SO in Conservation-restoration Orientation objets archéologiques et ethnographiques

Année académique 2014-2015

Remise du travail : 20.07.2015

Jury : *26-27.08.2015*

Nombre de pages : 131

Table des matières

Annexes.		3
1. L	iste des résultats d'analyses	
1.1	Analyses IC, ICP et titration	
1.2	Porosimétrie	
2. C	onstat d'état	
3. C	limat des pavillons	6
4. A	nalyses CI, ICP et titration	
4.1	Prélèvements, séchage des échantillons et méthodes d'analyses	8
4.2	Tableaux SI/CE	9
4.3	Résultats d'analyses IC, ICP et titration	
5. P	réparation des planelles	
6. N	lesures de la conductivité	
6.1	Conductivité des matériaux de dessalement	
6.2	Conductivité des compresses avant et après dessalement	
7. E	chantillons de porosimétrie	
7.1	Photos des échantillons	
7.2	Calculs de la porosité du mortier archéologique	
7.3	Exemple d'un résultat d'analyse de porosimétrie	
8. C	ompresses	
9. F	ournisseurs	
10.	Fiches techniques et de sécurité (DS et SDS)	
10.1	Liste des fiches techniques et de sécurité	
Liste des	figures	129
Liste des	tableaux	131

Annexes

1. Liste des résultats d'analyses

1.1 Analyses IC, ICP et titration

L'intégralité des résultats a été résumée dans deux tableaux en annexes, pages 13-15. Aucun fichier n'a été fourni, car les données sont généralement rendues sous forme de tableau Excel[®].

1.2 Porosimétrie

10 documents PDF ont été fournis par Mr Sizun pour les résultats des analyses :

- Aventicum_1_PLANELLE EN CERAMIQUE
- Aventicum_2_MORTIER BLANC
- Aventicum_3_MORTIER ROSE
- Aventicum_4_AKSF1_(COMPRESSE)
- Aventicum_5_AKSPF1_(COMPRESSE)
- Aventicum_6_AKPF3_(COMPRESSE)
- Aventicum_7_KPF1_(COMPRESSE)
- Aventicum_8_KPF3_(COMPRESSE)
- Aventicum_9_AKPG_(COMPRESSE)
- Aventicum_10_AKSG_(COMPRESSE)

2. Constat d'état

Figure 1 : Emplacement géographique du site d'Orbe-Boscéaz, à proximité d'Yverdon. ©Google, 2015.

Figure 2 : Route cantonale et sortie d'autoroute. ©*Google, 2015.*

Figure 3 : Bovins à proximité du site. ©Etat de Vaud - Aventicum, 2013.

Figure 4 : Vue du site en hiver. ©Etat de Vaud -Aventicum, 2013.

Figure 5 : Système de « ventilation intelligente » dans les tranchées des mosaïques. ©Etat de Vaud - Aventicum, 2013.

Figure 6 : Capteur. ©Etat de Vaud - Aventicum, 2013.

Figure 7 : Processeur. ©Etat de Vaud - Aventicum, 2013.

3. Climat des pavillons

Figure 8 : Charte psychrométrique – variations d'humidité relative par rapport à la pression et à la température. © *CarrierCorporation, 1975.*

Orbe, pavillon IV conditions climatiques mesurées sur la mosaïque (in)

Figure 9 : Climat du pavillon IV en 2011. Trait épais = climat de la tranchée, trait fin= climat du local. ©Etat de Vaud - Aventicum, 2011.

Orbe, pavillon III conditions climatiques mesurées sur la mosaïque (in)

4. Analyses CI, ICP et titration

4.1 Prélèvements, séchage des échantillons et méthodes d'analyses

Figure 11 : Filtre avec poids et nom de l'échantillon inscrit. ©*HE-Arc CR, 2015.*

Figure 13 : Boîte hermétisée contenant les prélèvements contenant du gel de silice. ©HE-Arc CR, 2015.

Figure 12 : Filtre et fraiseuse - le filtre aspire les poussières. ©HE-Arc CR, 2015.

Figure 14 : Echantillons séchés au four. ©HE-Arc CR, 2015.

Figure 15 : Mesure des poids des échantillons au laboratoire d'Avenches. ©HE-Arc CR, 2015.

4.2 Tableaux SI/CE

Figure 16 : R²x100 = proportion de corrélation entre les échantillons (45%). La différence de corrélation entre ceuxci est due à l'un des échantillons, qui contient une quantité particulièrement élevée de ions peu conducteurs (point en bas à droite). ©HE-Arc CR, 2015.

Figure 17 : $R^2 x 100 =$ proportion de corrélation entre les échantillons (98%). ©HE-Arc CR, 2015.

Figure 18 : $R^2 x 100 = proportion de corrélation entre les échantillons (86%). ©HE-Arc CR, 2015.$

Figure 19 : $R^2 x 100 = proportion de corrélation entre les échantillons (99%). ©HE-Arc CR, 2015.$

Figure 20 : R²x100 = proportion de corrélation entre les échantillons (88%). ©HE-Arc CR, 2015.

Figure 21 : $R^2 x 100 = proportion de corrélation entre les échantillons (82%). ©HE-Arc CR, 2015.$

Figure 22 : R²x100 = proportion de corrélation entre les échantillons (98%). ©HE-Arc CR, 2015.

[µg/g]	Na+	K+	NH_{4}^{+}	Ca ²⁺	Mg ²⁺	Al ³⁺	Cl⁻	NO ₂ -	NO₃ ⁻	SO4 ²⁻
M8_TPA	3,920	0,820	n.d.	n.d.	n.d.	n.d.	1,269	n.d.	n.d.	2,106
M8_PA1	62,950	11,900	n.d.	600,100	n.d.	1,050	33,157	1,018	63,438	3,610
M8_PA2	37,020	20,500	n.d.	334,600	n.d.	n.d.	11,790	n.d.	26,038	6,384
M8_PA3	22,000	9,870	n.d.	11,860	n.d.	n.d.	2,774	n.d.	4,694	10,439
M8_TPF	0,890	n.d.	n.d.	n.d.	n.d.	n.d.	17,181	n.d.		
M8_PF1	18,680	8,900	n.d.	311,750	n.d.	3,670	24,439	n.d.	28,883	23,597
M8_PF2	20,050	16,600	n.d.	310,700	n.d.	2,350	20,473	n.d.	16,777	19,448
M8_PF3	37,250	13,000	n.d.	16,850	n.d.	n.d.	4,011	n.d.	3,343	32,391
M8_TPB	1,700	n.d.	n.d.	11,000	n.d.	n.d.	1,240	n.d.	n.d.	18,161
M8_PB1	45,950	8,100	n.d.	144,800	n.d.	n.d.	7,000	n.d.	15,508	410,693
M8_PB2	43,000	8,500	n.d.	15,300	2,430	n.d.	6,505	n.d.	13,378	119,336
M8_PB3	46,000	6,100	n.d.	12,700	n.d.	n.d.	5,309	n.d.	9,533	75,192
M8_TSF	1,450	0,570	n.d.	n.d.	n.d.	n.d.	12,535	n.d.	n.d.	1,536
M8_SF1	10,770	2,940	n.d.	17,640	n.d.	n.d.	1,619	n.d.	n.d.	27,624
M8_SF2	29,130	4,100	n.d.	n.d.	n.d.	n.d.	7,637	n.d.	n.d.	15,177
M8_SF3	30,430	4,185	n.d.	n.d.	n.d.	n.d.	1,419	n.d.	n.d.	15,625
M7_PA1	74,000	39,400	0,330	n.d.	n.d.	n.d.	1,490	n.d.	4,190	8,612
M7_PA2	64,510	32,000	0,140	72,000	n.d.	2,450	2,103	1,070	4,551	6,094
M7_PA3	10,900	11,100	0,160	513,300	n.d.	n.d.	1,410	1,557	2,725	1,165
M7_PG1	27,450	13,250	n.d.	1,000	n.d.	n.d.	n.d.	n.d.	n.d.	1,133
M7_PG2	16,650	10,850	n.d.	85,000	n.d.	2,780	n.d.	n.d.	2,698	1,730
M7_PG3	0,990	1,070	n.d.	135,550	n.d.	2,150	n.d.	n.d.	2,755	1,159
M7_PB1	295,000	68,000	0,110	n.d.	n.d.	n.d.	9,297	1,158	46,574	29,268
M7_PB2	92,000	38,100	0,120	25,400	n.d.	2,470	5,450	n.d.	22,163	12,342
M7_PB3	20,200	14,600	0,220	410,000	n.d.	2,900	1,973	n.d.	7,163	2,517
M7_SG1	27,500	11,200	n.d.	5,370	n.d.	n.d.	n.d.	n.d.	1,017	1,682
M7_SG2	23,750	9,900	n.d.	3,170	n.d.	3,390	1,356	n.d.	4,520	5,598
M7_SG3	2,250	1,390	n.d.	53,800	n.d.	2,390	1,529	n.d.	7,623	3,557
AG00	1,870	4,200	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
AG0	10,130	15,000	n.d.	n.d.	4,636	n.d.	n.d.	n.d.	6,573	44,927
AG1	7,000	9,500	n.d.	12,510	2,834	n.d.	n.d.	n.d.	1,828	29,589
AG2	8,600	10,800	n.d.	11,680	2,315	n.d.	n.d.	n.d.	2,260	30,896
AG3	7,100	10,500	n.d.	11,620	2,049	n.d.	n.d.	n.d.	2,119	28,711
AG4	9,050	11,950	n.d.	13,870	2,403	n.d.	n.d.	n.d.	3,662	40,003
AG5	7,500	10,900	n.d.	12,430	2,314	n.d.	n.d.	n.d.	3,353	30,419
AG6	8,000	10,750	n.d.	12,680	2,856	n.d.	n.d.	n.d.	2,416	33,813
AG7	8,300	11,100	n.d.	11,400	2,690	n.d.	n.d.	n.d.	3,815	37,751
AG8	7,850	10,200	n.d.	10,780	2,351	n.d.	n.d.	n.d.	3,019	36,857
AKSF	2,557	0,748	n.d.	n.d.	n.d.	1,500	n.d.	n.d.	1,864	1,879
AKSG	1,630	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1,369	

4.3 Résultats d'analyses IC, ICP et titration

AKPF	3,015	1,021	n.d.	n.d.	n.d.	2,250	n.d.	n.d.	2,311	1,828
AKPG	7,970	2,041	n.d.	n.d.	n.d.	2,300	n.d.	n.d.	3,851	5,106
Limite dét.										
1	0,50	0,50	0,02	10,00	2,00	1,00	1,00	1,00	1,00	1,00

Tableau 1 : Teneur en ion avant et après dessalement des mosaïques et des planelles et des compresses AKSF, AKSG, AKPF et AKPG avant dessalement en μg/g. ©HE-Arc CR, 2015.

[µmoleq/g]	Na+	K+	NH_{4}^{+}	Ca ²⁺	Mg ²⁺	Al ³⁺	Cl	NO ₂ -	NO3 ⁻	SO4 ²⁻
M8_TPA	1,7	0,2	n.d.	n.d.	n.d.	n.d.	0,4	n.d.	n.d.	0,4
M8_PA1	33,0	3,7	n.d.	361,2	n.d.	1,4	11,3	0,3	12,3	0,9
M8_PA2	20,5	6,7	n.d.	212,2	n.d.	n.d.	4,2	n.d.	5,3	1,7
M8_PA3	17,7	4,7	n.d.	10,9	n.d.	n.d.	1,4	n.d.	1,4	4,0
M8_TPF	0,2	n.d.	n.d.	n.d.	n.d.	n.d.	2,3	n.d.	n.d.	n.d.
M8_PF1	15,5	4,3	n.d.	297,1	n.d.	7,8	13,2	n.d.	8,9	9,4
M8_PF2	15,0	7,3	n.d.	267,4	n.d.	4,5	10,0	n.d.	4,7	7,0
M8_PF3	24,7	5,1	n.d.	12,8	n.d.	n.d.	1,7	n.d.	0,8	10,3
M8_TPB	0,8	n.d.	n.d.	5,7	n.d.	n.d.	0,4	n.d.	n.d.	3,9
M8_PB1	29,5	3,1	n.d.	106,7	n.d.	n.d.	2,9	n.d.	3,7	126,3
M8_PB2	20,3	2,4	n.d.	8,3	2,2	n.d.	2,0	n.d.	2,3	27,0
M8_PB3	26,0	2,0	n.d.	8,2	n.d.	n.d.	1,9	n.d.	2,0	20,4
M8_TSF	0,3	0,1	n.d.	n.d.	n.d.	n.d.	1,6	n.d.	n.d.	0,1
M8_SF1	9,9	1,6	n.d.	18,7	n.d.	n.d.	1,0	n.d.	n.d.	12,2
M8_SF2	19,1	1,6	n.d.	n.d.	n.d.	n.d.	3,3	n.d.	n.d.	4,8
M8_SF3	19,8	1,6	n.d.	n.d.	n.d.	n.d.	0,6	n.d.	n.d.	4,9
M7_PA1	54,1	16,9	0,3	n.d.	n.d.	n.d.	0,7	n.d.	1,1	3,0
M7_PA2	35,3	10,3	0,1	45,2	n.d.	3,4	0,7	0,3	0,9	1,6
M7_PA3	8,4	5,1	0,2	455,8	n.d.	n.d.	0,7	0,6	0,8	0,4
M7_PG1	10,8	3,1	n.d.	0,4	n.d.	n.d.	n.d.	n.d.	0,1	0,2
M7_PG2	7,5	2,9	n.d.	44,2	n.d.	3,2	n.d.	n.d.	0,5	0,4
M7_PG3	0,6	0,4	n.d.	87,8	n.d.	3,1	n.d.	n.d.	0,6	0,3
M7_PB1	104,0	14,1	n.d.	0,8	n.d.	2,2	2,1	0,2	6,1	4,9
M7_PB2	46,8	11,4	0,1	14,8	n.d.	3,8	1,8	n.d.	4,2	3,0
M7_PB3	11,5	4,9	0,2	266,6	n.d.	n.d.	0,7	n.d.	1,5	0,7
M7_SG1	13,6	3,2	n.d.	3,0	n.d.	n.d.	n.d.	n.d.	0,2	0,4
M7_SG2	11,9	2,9	n.d.	1,8	n.d.	4,3	0,4	n.d.	0,8	1,3
M7_SG3	1,1	0,4	n.d.	30,0	n.d.	3,0	0,5	n.d.	1,4	0,8
AG00	0,9	1,2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
AG0	5,0	4,3	n.d.	n.d.	n.d.	n.d.	1,5	n.d.	1,2	10,6
AG1	3,5	2,8	n.d.	7,1	n.d.	n.d.	0,9	n.d.	0,3	7,0
AG2	3,9	2,9	n.d.	6,0	n.d.	n.d.	0,7	n.d.	0,4	6,7
AG3	3,2	2,8	n.d.	6,0	n.d.	n.d.	0,6	n.d.	0,4	6,2
AG4	4,1	3,2	n.d.	7,2	n.d.	n.d.	0,7	n.d.	0,6	8,6
AG5	3,3	2,8	n.d.	6,3	n.d.	n.d.	0,7	n.d.	0,5	6,4

AG6	3,6	2,8	n.d.	6,5	n.d.	n.d.	0,8	n.d.	0,4	7,2
AG7	3,5	2,7	n.d.	5,5	n.d.	n.d.	0,7	n.d.	0,6	7,6
AG8	3,5	2,7	n.d.	5,6	n.d.	n.d.	0,7	n.d.	0,5	8,0
AKSF	1,4	0,2	n.d.	n.d.	n.d.	2,1	0,6	n.d.	n.d.	0,5
AKSG	0,7	n.d.	n.d.	n.d.	n.d.	n.d.	0,4	n.d.	n.d.	n.d.
AKPF	1,6	0,3	n.d.	n.d.	n.d.	3,1	0,8	n.d.	n.d.	0,5
AKPG	4,2	0,6	n.d.	n.d.	n.d.	3,1	1,3	n.d.	n.d.	1,3
Limite dét. I	0,27	0,16	0,01	6,23	2,06	1,38	0,35	0,27	0,20	0,26
Limite dét. Il	0,14	0,09		3,32			0,19			0,14

Tableau 2 : Teneur en ion avant et après dessalement des mosaïques et des planelles et des compresses AKSF, AKSG, AKPF et AKPG avant dessalement en µmoleq/g. La limite de détection II est uniquement pour les tesselles. ©HE-Arc CR, 2015.

Figure 23 : Teneur en ions des trois profondeurs du prélèvement M8_PA. ©HE-Arc CR, 2015.

Figure 24 : Teneur en ions des trois profondeurs du prélèvement M8_PA après dessalement. ©HE-Arc CR, 2015.

Figure 25 : Teneur en ions des trois profondeurs du prélèvement M8_PB. ©HE-Arc CR, 2015.

Figure 26 : Teneur en ions des trois profondeurs du prélèvement M8_PB après dessalement. ©HE-Arc CR, 2015.

Figure 27 : Teneur en ions des trois profondeurs du prélèvement M7_PA. ©HE-Arc CR, 2015.

Figure 28 : Teneur en ions des trois profondeurs du prélèvement M7_PA après dessalement. ©HE-Arc CR, 2015.

Figure 29 : Teneur en ions des trois profondeurs du prélèvement M7_PB. ©HE-Arc CR, 2015.

Figure 30 : Teneur en ions des trois profondeurs du prélèvement M7_PB après dessalement. ©HE-Arc CR, 2015.

Figure 31 : Teneur en ions des planelles non-salée, salée et après dessalement (AG00-AG8). ©HE-Arc CR, 2015.

Figure 32 : Teneur en ions des compresses AKSF, AKSG, AKPF et AKPG avant utilisation. ©HE-Arc CR, 2015.

5. Préparation des planelles

Figure 33 : Bains salins contenant 3 planelles. ©HE-Arc CR, 2015.

Figure 34 : Parafilm[®] sous la planelle. ©HE-Arc CR, 2015.

Figure 35 : Planelles recouvertes de compresses installées dans l'armoire climatique. ©HE-Arc CR, 2015.

Figure 36 : Armoire climatique. ©HE-Arc CR, 2015.

Figure 37 : Perte en eau des planelles durant 1 mois de séchage à 40°C. ©HE-Arc CR, 2015.

Figure 38 : Vue rapprochée des derniers jours de séchage. ©HE-Arc CR, 2015.

6. Mesures de la conductivité

6.1 Conductivité des matériaux de dessalement

Matériau	Temps (H)	Mech [mg]	Vsol [l]	µS/cm	µS/cm eff.	TDS [mg/l]	TDS [mg]	TDS [%]
	0.10	1523000	0,04347	6,72	4,68	2,340	0,10171980	6,6789E-06
	5	1523000	0,04347	8,57	6,53	3,265	0,14192955	9,3191E-06
Sable 0.3-0.9	25	15230	0,04347	9,58	7,54	3,770	0,16388190	0,00107605
	119	15230	0,04347	12,24	10,20	5,100	0,22169700	0,00145566
	0.10	14940	0,04334	25,60	25,60	12,800	0,55475200	0,0037132
	5	14940	0,04334	27,90	25,86	12,930	0,56038620	0,00375091
Sable 0.06-0.3	25	14940	0,04334	29,60	27,56	13,780	0,59722520	0,00399749
	119	14940	0,04334	35,00	35,00	17,500	0,75845000	0,00507664
	0.10	4000	0,04809	100,60	100,60	50,300	2,41892700	0,06047318
	5	4000	0,04809	127,30	125,26	62,630	3,01187670	0,07529692
China Clay	25	4000	0,04809	133,30	131,26	65,630	3,15614670	0,07890367
	119	4000	0,04809	152,60	152,60	76,300	3,66926700	0,09173168
	0.10	4360	0,0481	20,90	20,90	10,450	0,50264500	0,01152856
	5	4360	0,0481	20,70	18,66	9,330	0,44877300	0,01029296
Kaolin Gleiblich	25	4360	0,0481	21,80	19,76	9,880	0,47522800	0,01089972
	119	4360	0,0481	24,60	24,60	12,300	0,59163000	0,0135695
	0.10	650	0.04613	7.52	5.48	2.740	0.12639620	0.01944557
	5	650	0,04613	10,35	8,31	4,155	0,19167015	0,02948772
Perlite fine	25	650	0,04613	11,90	9,86	4,930	0,22742090	0,03498783
	119	650	0,04613	14,74	12,70	6,350	0,29292550	0,04506546
	0.10	910	0,04713	2,47	2,00	1,000	0,04713000	0,00517912
	5	910	0,04713	6,12	5,65	2,825	0,13314225	0,01463102
Perlite grossiere	25	910	0,04713	7,88	7,41	3,705	0,17461665	0,01918864
	149	910	0,04713	11,69	11,22	5,610	0,26439930	0,02905487
	0.10	2090	0,04788	23,60	23,60	11,800	0,56498400	0,02703273
	5	2090	0,04788	25,60	25,13	12,565	0,60161220	0,02878527
Arbocei	25	2090	0,04788	26,00	25,53	12,765	0,61118820	0,02924345
	149	2090	0,04788	26,80	26,80	13,400	0,64159200	0,03069818

 Tableau 3 : Conductivité des matériaux constitutifs des compresses calculés en TDS. % TDS = pourcentage des sels par rapport au total des solides dissous. ©HE-Arc CR, 2015.
6.2 Conductivité des compresses avant et après dessalement

Nom	CE	pН
AKSF NS	20	6,27
AKSF C1	62	7,60
AKSF C2	96	6,85
AKSF C3	35	7,08
AKPF NS	22	6,35
AKPF C1	68	7,04
AKPF C2	107	7,53
AKPF C3	53	7,15
AKSG NS	9	6,3
AKSG C1	69	7,60
AKSG C2	56	7,46
AKSG C3	64	7,90
AKPG NS	50	6,81
AKPG C1	50	7,20
AKPG C2	133	9,20
AKPG C3	109	8,50

Nom	CE	pН
AKSG1 NS	40	6,55
AKSG1 C1	108	6,78
AKSG1 C2	120	6,73
AKSF1 NS	38	6,13
AKSF1 C1	93	6,67
AKSF1 C2	88	6,70
AKPF1 NS	37	6,20
AKPF1 C1	101	6,76
AKPF1 C2	102	6,73
AKPF3 NS	31	6,40
AKPF3 C1	109	6,80
AKPF3 C2	107	6,70
KSG1 NS	14	6,20
KSG1 C1	68	6,50
KSG1 C2	38	6,60
KSF1 NS	18	6,10
KSF1 C1	50	6,60
KSF1 C2	89	6,60
KPF1 NS	41	6,80
KPF1 C1	114	6,60
KPF1 C2	132	6,70
KPF3 NS	44	6,50
KPF3 C1	232	6,50
KPF3 C2	98	6,65

Tableau 4 : Tableaux des conductivités avant et après dessalement de chacune des compresses utilisées. Tableaude gauche : compresses des mosaïques. Tableau de droite : compresses des planelles. NS = compresses sanssels, C1 = 1^{ère} compresse, C2 = 2^{ème} compresse, C3 = 3^{ème} compresse. ©HE-Arc CR, 2015.

7. Echantillons de porosimétrie

7.1 Photos des échantillons

Figure 39 : Echantillons pour les analyses de porosimétrie. ©HE-Arc CR, 2015.

Figure 40 : Echantillons de mortier. ©HE-Arc CR, 2015.

Figure 41 : Boîte hermétisée par du scotch d'aluminium. ©HE-Arc CR, 2015.

Figure 42 : dernier échantillons pour la porosimétrie. ©HE-Arc CR, 2015.

Figure 43 : Imbibition en eau dégazée des échantillons de mortier sous vide. ©HE-Arc CR, 2015.

Figure 44 : Mesure du poids des échantillons dans un panier en métal plongé dans l'eau, crocheté à une balance. ©HE-Arc CR, 2015.

Figure 45 : Installation de mise sous vide des échantillons afin des les imbiber d'eau dégazée. ©HE-Arc CR, 2015.

										<u> </u>				
Porosité	ouverte	totale [%]	(basée	sur	densité	de l'eau =	1) - Po		43,69	44,29	43,37	46,23	44,26	44'44
Volume porosité	piégée = volume	occupé par de	l'air après imbib	[cm3] - Vpp					4,008521073	1,156794986	2,077880883	1,653209331	1,103545945	0,884693235
Porosité	piégée =	porosité	ouverte	occupée par	de l'air	a près i mbi b	dd - [%]		4,204933518	3,374055668	3,479255356	4,943068712	3,403484904	2,852376951
Porosité	ca pillai re =	porosité	ouverte	occupée par	l'eau après	imbib [%] -	Pc		39,54725215	40,98002042	39,95177656	41,35147257	40,92647422	41,65591953
Porosité	ouverte =	porosité	ouverte	totale	od - [%]				43,75218567	44,35407608	43,43103192	46,29454128	44,32995912	44,50829648
Volume porosité	ouverte =	Volume des	vides	[cm3] - Vpo					41,70852107	15,20679499	25,93788088	15,48320933	14,37354595	13,80469324
Volume	a ppa rent =	volume	total	[cm3] -	Vapp				95,329	34,285	59,722	33,445	32,424	31,016
Volume	a bsol u =	volume de	solide	[cm3] - Vs					53,683	19,101	33,823	17,985	18,072	17,232
Masse	volumique	apparente	[g/cm3] - Papp						1,499963285	1,500072918	1,495093935	1,435790103	1,461263262	1,490521021
Masse	volumique	absolue (solide)	[g/cm3] - Pabs						2,663599277	2,692529187	2,639919581	2,67000278	2,621735281	2,682799443
Poids	immergé	a prè s	absorption	d'eau sous	vide, -700	mbar	[g] ou [PA] -	M3	89,307	32,329	55,467	30,035	29,308	28,998
Poids	a près	a bs o rp ti	on d'eau	sons	vide, -	700	mbar	[g] - M2	184,636	66,614	115,189	63,48	61,732	60,014
Poids	après	imbibition	capillaire	[g]					180,69	65,48	113,15	61,85	60,65	59,15
Poids sec	(a près 67h	à 105°C)	[g] - M1						142,99	51,43	89,29	48,02	47,38	46,23
Fragment	۰N								1	2	3	4	5	9

7.2	Calculs	de la	a porosité	du mortier	archéologique
-----	---------	-------	------------	------------	---------------

Calcul	Formule
Volume apparent	$V_{app} = V_s + V_{po} + V_{pf}$
Volume de porosité ouverte	$V_{po} = \frac{m_2 - m_1}{\rho_{eau}}$
Masse volumique absolue du matériel	$\rho_{abs} = \frac{m_2}{m_2 - m_3}$

Tableau 6 : Equations physiques utilisées pour les calculs des volumes de porosité des matériaux. ©HE-Arc CR, 2015.

Tableau 5 : Résultats des calculs de porosité faits au laboratoire d'Avenches. ©HE-Arc CR, 2015.

7.3 Exemple d'un résultat d'analyse de porosimétrie

UNIV. FRANCHE-COMTE UMR CHRONOENVIRONNEMENT

AutoPore IV 9500 V1.09

Serial: 180

Page 1

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Port: 1/1

		Su	mmary	Repo	rt				
		Penetro	ometer	paran	neters				
Penetrometer: Pen. Constant: Stem Volume: Pen. Volume:	09-101 5cc 1.13cc solid 21.000 μL/pF 1.1310 mL 6.6398 mL			Pen. Weight: Max. Head Pressure: Assembly Weight:				55.5726 g 0.030682 MP 133.1296 g	a
Adv. Contact Angle: Hg Surface Tension:		130.000 degree 485.000 dynes/o Us	s R cm H er Para	lec. Co Ig Der meter	ontact Ang nsity: r s	gle:		130.000 deg 13.5428 g/m	grees nL
Param 1:	0.000	Param 2:		0.00	0	F	aram 3:	0.000	
		Lo	ow Pres	ssure	:				
	Evacuation Pres Evacuation Time Mercury Filling I Equilibration Tim	ssure: e: Pressure: ne [:]			0.0	30 5 034 30	µmHg mins MPa secs		
	Equilibridgen m	Hi	gh Pres	ssure	:	00	0000		
	Equilibration Tin	ne:				60	secs		
		No E	Blank Co	orrect	ion				
		(From Radius	0.0030	0 to	150.0000	µm)			
		Intrusi	on Data	a Sum	mary				
	To Median P Mediar Average Bulk Den Appare	Total Intrusion Volume = Total Pore Area = Median Pore Radius (Volume) = Average Pore Radius (Area) = Bulk Density at 0.0042 MPa = Apparent (skeletal) Density = Porosity = Stem Volume Used =			0.5571 5.630 0.7692 0.0307 0.1979 0.9683 2.1024 53.9434 47	mL/ μm μm g/m g/m %	g J L		
		Pore S	tructure	e Sun	nmary				
		Threshold Pres Characteristic len	sure: gth =		0.0099 62.7961	MPa µm	a (Calculated)		

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1

Page 2

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Pressure (MPa)	Pore Radius (µm)	Cumulative Pore Volume (mL/g)	Mean Radius (µm)	dV/dlogR Pore Volume (mL/g)
0.0042	150.0000	0.0000	150.0000	0.000 x 10 ⁰
0.0043	145.9477	0.0003	147.9738	2.338 x 10 ⁻²
0.0054	114.7974	0.0031	130.3725	2.679 x 10 ⁻²
0.0068	91.1680	0.0055	102.9827	2.442×10^{-2}
0.0086	72.6226	0.0080	81.8953	2.514 x 10 ⁻²
0.0107	58.0407	0.0106	65.3317	2.670 x 10 ⁻²
0.0136	45.8025	0.0187	51.9216	7.921 x 10 ⁻²
0.0171	36.3827	0.0221	41.0926	3.336 x 10 ⁻²
0.0216	28.8423	0.0265	32.6125	4.423 x 10 ⁻²
0.0272	22.9251	0.0326	25.8837	6.069 x 10 ⁻²
0.0344	18.1410	0.0375	20.5330	4.847 x 10 ⁻²
0.0432	14.4175	0.0414	16.2793	3.927 x 10 ⁻²
0.0545	11.4369	0.0461	12.9272	4.628 x 10 ⁻²
0.0686	9.0909	0.0522	10.2639	6.109 x 10 ⁻²
0.0865	7.2042	0.0599	8.1476	7.604 x 10 ⁻²
0.1091	5.7171	0.0692	6.4607	9.273 x 10 ⁻²
0.1373	4.5423	0.0784	5.1297	9.203 x 10 ⁻²
0.1551	4.0201	0.0838	4.2812	1.031 x 10 ⁻¹
0.1727	3.6107	0.0909	3.8154	1.514 x 10 ⁻¹
0.1953	3.1920	0.0970	3.4013	1.138 x 10 ⁻¹
0.2027	3.0763	0.0973	3.1342	1.894 x 10 ⁻²
0.2371	2.6295	0.1001	2.8529	4.176 x 10 ⁻²
0.2671	2.3347	0.1070	2.4821	1.329 x 10 ⁻¹
0.3015	2.0683	0.1157	2.2015	1.651 x 10 ⁻¹
0.3370	1.8499	0.1272	1.9591	2.371 x 10 ⁻¹
0.3739	1.6677	0.1371	1.7588	2.207 x 10 ⁻¹
0.4269	1.4606	0.1558	1.5641	3.243 x 10 ⁻¹
0.4814	1.2953	0.1751	1.3779	3.698 x 10 ⁻¹
0.5372	1.1606	0.1956	1.2279	4.295 x 10 ⁻¹
0.6018	1.0361	0.2182	1.0983	4.586 x 10 ⁻¹
0.6777	0.9201	0.2432	0.9781	4.864 x 10 ⁻¹
0.7633	0.8169	0.2663	0.8685	4.463 x 10 ⁻¹
0.8578	0 7268	0 2902	0 7719	4707×10^{-1}

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1

Page 3

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Pressure (MPa)	Pore Radius (µm)	Cumulative Pore Volume (mL/g)	Mean Radius (µm)	dV/dlogR Pore Volume (mL/g)
0.9717	0.6417	0.3131	0.6843	4.238 x 10 ⁻¹
1.0869	0.5737	0.3325	0.6077	3.978 x 10 ⁻¹
1.2232	0.5097	0.3534	0.5417	4.074 x 10 ⁻¹
1.3622	0.4577	0.3709	0.4837	3.745 x 10 ⁻¹
1.7167	0.3632	0.4056	0.4104	3.456 x 10 ⁻¹
2.1692	0.2874	0.4364	0.3253	3.028 x 10 ⁻¹
2.7364	0.2279	0.4623	0.2576	2.567 x 10 ⁻¹
3.4458	0.1809	0.4827	0.2044	2.037 x 10 ⁻¹
4.3368	0.1438	0.4988	0.1624	1.618 x 10 ⁻¹
5.4665	0.1141	0.5111	0.1289	1.221 x 10 ⁻¹
6.8781	0.0907	0.5207	0.1024	9.599 x 10 ⁻²
8.6651	0.0720	0.5280	0.0813	7.332 x 10 ⁻²
10.9064	0.0572	0.5342	0.0646	6.136 x 10 ⁻²
13.7476	0.0454	0.5388	0.0513	4.622 x 10 ⁻²
17.3018	0.0360	0.5424	0.0407	3.599 x 10 ⁻²
21.7594	0.0287	0.5451	0.0323	2.703 x 10 ⁻²
27.4283	0.0227	0.5475	0.0257	2.346 x 10 ⁻²
30.9858	0.0201	0.5487	0.0214	2.373 x 10 ⁻²
34.5255	0.0181	0.5500	0.0191	2.640 x 10 ⁻²
38.9833	0.0160	0.5506	0.0170	1.318 x 10 ⁻²
43.4402	0.0144	0.5512	0.0152	1.248 x 10 ⁻²
49.1161	0.0127	0.5518	0.0135	1.049 x 10 ⁻²
54.7473	0.0114	0.5522	0.0120	8.760×10^{-3}
61.7998	0.0101	0.5522	0.0107	0.000 x 10 ⁰
68.9121	0.0090	0.5529	0.0096	1.570 x 10 ⁻²
77.7827	0.0080	0.5529	0.0085	0.000 x 10 ⁰
82.2120	0.0076	0.5536	0.0078	2.579 x 10 ⁻²
86.6525	0.0072	0.5536	0.0074	0.000×10^{0}
97.8101	0.0064	0.5537	0.0068	0.000 x 10 ⁰
108.9917	0.0057	0.5544	0.0060	1.571×10^{-2}
123.0112	0.0051	0.5546	0.0054	4.429 x 10 ⁻³
137.0590	0.0045	0.5550	0.0048	7.519×10^{-3}
154.6919	0.0040	0.5553	0.0043	6.475×10^{-3}

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1

Page 4

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Tabular Report

Pressure (MPa)	Pore Radius (µm)	Cumulative Pore Volume (mL/g)	Mean Radius (µm)	dV/dlogR Pore Volume (mL/g)
163.5209	0.0038	0.5556	0.0039	1.270 x 10 ⁻²
172.3455	0.0036	0.5560	0.0037	1.556 x 10 ⁻²
189.5858	0.0033	0.5563	0.0035	8.048 x 10 ⁻³
198.2006	0.0031	0.5566	0.0032	1.702 x 10 ⁻²
206.8169	0.0030	0.5571	0.0031	2.526 x 10 ⁻²
198.0542	0.0031	0.5577	0.0031	-2.935 x 10 ⁻²
189.6551	0.0033	0.5577	0.0032	0.000 x 10 ⁰
172.3571	0.0036	0.5577	0.0035	0.000 x 10 ⁰
163.6129	0.0038	0.5577	0.0037	0.000 x 10 ⁰
154.7965	0.0040	0.5577	0.0039	0.000 x 10 ⁰
137.1521	0.0045	0.5577	0.0043	0.000 x 10 ⁰
123.1249	0.0051	0.5577	0.0048	0.000 x 10 ⁰
109.0393	0.0057	0.5577	0.0054	0.000 x 10 ⁰
97.9685	0.0064	0.5577	0.0060	0.000 x 10 ⁰
86.7279	0.0072	0.5577	0.0068	0.000 x 10 ⁰
82.3446	0.0076	0.5577	0.0074	0.000 x 10 ⁰
77.9225	0.0080	0.5577	0.0078	0.000 x 10 ⁰
69.0044	0.0090	0.5576	0.0085	0.000 x 10 ⁰
61.9271	0.0101	0.5573	0.0096	5.215 x 10 ⁻³
54.8492	0.0114	0.5571	0.0107	4.406 x 10 ⁻³
49.2201	0.0127	0.5568	0.0120	5.594 x 10 ⁻³
39.1514	0.0159	0.5566	0.0143	2.138×10^{-3}
34.5992	0.0180	0.5562	0.0170	7.676 x 10 ⁻³
27.5009	0.0227	0.5557	0.0203	5.292 x 10 ⁻³
21.8947	0.0285	0.5551	0.0256	6.068×10^{-3}
17.3699	0.0359	0.5543	0.0322	8.078 x 10 ⁻³
13.8048	0.0452	0.5534	0.0405	8.432 x 10 ⁻³
10.9541	0.0569	0.5524	0.0510	1.021×10^{-2}
8.7136	0.0716	0.5508	0.0642	1.598 x 10 ⁻²
6.8800	0.0906	0.5496	0.0811	1.214×10^{-2}
5.5241	0.1129	0.5480	0.1017	1.628×10^{-2}
4.3625	0.1429	0.5462	0.1279	1.803×10^{-2}
2.7623	0.2257	0.5417	0.1843	2.244 x 10 ⁻²

31

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1

Page 5

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Pressure (MPa)	Pore Radius (µm)	Cumulative Pore Volume (mL/g)	Mean Radius (µm)	dV/dlogR Pore Volume (mL/g)
2.2035	0.2830	0.5388	0.2543	2.944 x 10 ⁻²
1.7533	0.3556	0.5355	0.3193	3.390 x 10 ⁻²
1.3893	0.4488	0.5316	0.4022	3.820 x 10 ⁻²
1.2608	0.4945	0.5294	0.4717	5.138 x 10 ⁻²
1.1123	0.5605	0.5269	0.5275	4.660 x 10 ⁻²
1.0071	0.6191	0.5245	0.5898	5.600 x 10 ⁻²
0.8915	0.6994	0.5217	0.6592	5.230 x 10 ⁻²
0.7876	0.7917	0.5186	0.7455	5.819 x 10 ⁻²
0.7087	0.8798	0.5157	0.8357	6.228 x 10 ⁻²
0.6430	0.9697	0.5127	0.9247	7.122 x 10 ⁻²
0.5698	1.0943	0.5091	1.0320	6.934×10^{-2}
0.4534	1.3753	0.5021	1.2348	7.027×10^{-2}
0.4166	1.4968	0.4982	1.4361	1.060×10^{-1}
0.3683	1.6929	0.4934	1.5949	8.894 x 10 ⁻²
0.3347	1.8631	0.4890	1.7780	1.078×10^{-1}
0.3001	2.0775	0.4842	1.9703	1.004 x 10 ⁻¹
0.2839	2.1961	0.4816	2.1368	1.088×10^{-1}
0.2449	2.5465	0.4748	2.3713	1.056×10^{-1}
0.2170	2.8733	0.4689	2.7099	1.130×10^{-1}
0.1956	3.1878	0.4625	3.0305	1.405 x 10 ⁻¹
0.1889	3.3012	0.4595	3.2445	2.033 x 10 ⁻¹
0.2284	2.7303	0.4573	3.0157	-2.654×10^{-2}
0.2456	2.5387	0.4573	2.6345	0.000 x 10 ⁰
0.2851	2.1873	0.4573	2.3630	0.000 x 10 ⁰
0.3229	1.9308	0.4573	2.0590	0.000 x 10 ⁰
0.3666	1.7008	0.4573	1.8158	0.000 x 10 ⁰
0.4154	1.5009	0.4573	1.6009	0.000 x 10 ⁰
0.4658	1.3385	0.4573	1.4197	0.000×10^{0}
0.5290	1.1787	0.4573	1.2586	0.000 x 10 ⁰
0.5944	1.0490	0.4574	1.1138	3.392 x 10 ⁻³
0.6624	0.9412	0.4578	0.9951	7.623 x 10 ⁻³
0.7559	0.8249	0.4584	0.8830	1.059×10^{-2}
0.8520	0.7318	0.4592	0.7783	1.432 x 10 ⁻²

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1

Page 6

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Pressure (MPa)	Pore Radius (µm)	Cumulative Pore Volume (mL/g)	Mean Radius (µm)	dV/dlogR Pore Volume (mL/g)
0.9554	0.6526	0.4601	0.6922	1.887 x 10 ⁻²
1.0655	0.5852	0.4612	0.6189	2.274 x 10 ⁻²
1.2050	0.5174	0.4627	0.5513	2.931 x 10 ⁻²
1.3501	0.4618	0.4647	0.4896	3.895 x 10 ⁻²
1.7033	0.3661	0.4700	0.4139	5.286 x 10 ⁻²
2.1535	0.2895	0.4779	0.3278	7.798 x 10 ⁻²
2.7159	0.2296	0.4883	0.2596	1.033 x 10 ⁻¹
3.4360	0.1815	0.5000	0.2055	1.137 x 10 ⁻¹
4.3263	0.1441	0.5108	0.1628	1.087 x 10 ⁻¹
5.4572	0.1143	0.5200	0.1292	9.115 x 10 ⁻²
6.8774	0.0907	0.5276	0.1025	7.537 x 10 ⁻²
8.6586	0.0720	0.5335	0.0813	5.933 x 10 ⁻²
10.8982	0.0572	0.5383	0.0646	4.748 x 10 ⁻²
13.7285	0.0454	0.5420	0.0513	3.716 x 10 ⁻²
17.2853	0.0361	0.5449	0.0407	2.890 x 10 ⁻²
21.7510	0.0287	0.5472	0.0324	2.282 x 10 ⁻²
27.4009	0.0228	0.5488	0.0257	1.603 x 10 ⁻²
30.9211	0.0202	0.5496	0.0215	1.629 x 10 ⁻²
34.4495	0.0181	0.5503	0.0191	1.317 x 10 ⁻²
38.9380	0.0160	0.5508	0.0171	1.112 x 10 ⁻²
43.4325	0.0144	0.5514	0.0152	1.068 x 10 ⁻²
49.0622	0.0127	0.5518	0.0135	8.592 x 10 ⁻³
54.6522	0.0114	0.5522	0.0121	7.540 x 10 ⁻³
61.7728	0.0101	0.5524	0.0108	5.228 x 10 ⁻³
68.8212	0.0091	0.5527	0.0096	5.863 x 10 ⁻³
77.6889	0.0080	0.5530	0.0085	5.238 x 10 ⁻³
82.1258	0.0076	0.5533	0.0078	1.092 x 10 ⁻²
86.5197	0.0072	0.5535	0.0074	1.103 x 10 ⁻²
97.7089	0.0064	0.5536	0.0068	0.000 x 10 ⁰
108.8978	0.0057	0.5538	0.0061	4.272 x 10 ⁻³
122.8994	0.0051	0.5541	0.0054	5.573 x 10 ⁻³
136.9423	0.0046	0.5542	0.0048	2.915 x 10 ⁻³
154.6060	0.0040	0.5545	0.0043	4.773 x 10 ⁻³

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1

Page 7

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No

Pressure (MPa)	Pore Radius (µm)	Cumulative Pore Volume (mL/g)	Mean Radius (µm)	dV/dlogR Pore Volume (mL/g)
163.4433	0.0038	0.5548	0.0039	1.420 x 10 ⁻²
172.2854	0.0036	0.5552	0.0037	1.481 x 10 ⁻²
189.5234	0.0033	0.5555	0.0035	9.467 x 10 ⁻³
198.1518	0.0031	0.5558	0.0032	1.544 x 10 ⁻²
206.8420	0.0030	0.5562	0.0031	1.748 x 10 ⁻²

Serial: 180 AutoPore IV 9500 V1.09 Port: 1/1 Page 8 Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP LP Analysis Time: 16/06/2015 8:11:05 HP Analysis Time: 16/06/2015 9:31:57 Report Time: 17/06/2015 8:25:33 Sample Weight: 0.9521 g Correction Type: None Show Neg. Int: No **Cumulative Intrusion vs Pore size** Intrusion for Cycle 1 0 Extrusion for Cycle 1 CEERE OOC 00000 0.5 Carrow and the second s 0.4 Cumulative Intrusion (mL/g) 0.3 0.2 0.1

0.1

Pore size Radius (µm)

0.01

0.0

100

10

35

AutoPore IV 9500 V1.09 Serial: 180 Port: 1/1 Page 9

Sample ID: AVENTICVM - 4 - AKSF1 (COMPRESSE) Operator: J.-P. SIZUN Submitter: AVENTICVM - N. TERRAPON File: U:\USERS\JPSIZUN\DOCUME~1\9500\DATA\AVENT4.SMP

LP Analysis Time: 16/06/2015 8:11:05	Sample Weight: 0.9521 g
HP Analysis Time: 16/06/2015 9:31:57	Correction Type: None
Report Time: 17/06/2015 8:25:33	Show Neg. Int: No
Report Time: 17/06/2015 8:25:33	Show Neg. Int: No

Log Differential Intrusion vs Pore size

8. Compresses

Figure 46 : Mosaïque n°8 avant dessalement. ©HE-Arc CR, 2015.

Figure 47 : Dépose du papier japon sur la surface. ©HE-Arc CR, 2015.

Figure 48 : application des compresses sous forme de pâte. ©HE-Arc CR, 2015.

HE-Arc CR, Master of Arts HES-SO in Conservation-restoration Barbezat Nadège, Dessalement de deux mosaïques d'Orbe-Boscéaz par application de compresses, 20.07.2015

Figure 49 : Fin de l'application des compresses. ©HE-Arc CR, 2015.

Figure 50 : Recouvrement des compresses avec du film alimentaire. ©HE-Arc CR, 2015.

Figure 51 : Dépose des papiers japons sur la mosaïque n°7. ©HE-Arc CR, 2015.

Figure 52 : Humidification du papier japon (gauche). ©HE-Arc CR, 2015.

Figure 53 : Compresses appliquées à la surface. ©HE-Arc CR, 2015.

Figure 54 : Recouvrement des compresses avec du film alimentaire. ©HE-Arc CR, 2015.

Figure 55 : Installation photographique avant l'application des compresses. ©HE-Arc CR, 2015.

Figure 56 : Humidification de la surface. ©HE-Arc CR, 2015.

Figure 57 : Adhésion du papier japon à la surface par tatopage avec une brosse. ©HE-Arc CR, 2015.

Figure 58 : Retrait léger de l'eau de surface en surplus. ©HE-Arc CR, 2015.

Figure 59 : Mélange de la pâte d'une compresse. ©HE-Arc CR, 2015.

Figure 60 : Nettoyage de la surface à l'aide d'une brosse et d'une aspiration. ©*HE-Arc CR, 2015.*

Figure 61 : Surface après dessalement et avant nettoyage. ©HE-Arc CR, 2015.

Figure 62 : Surface après dessalement et après nettoyage. ©HE-Arc CR, 2015.

Figure 63 : Emplacement des prélèvements M8_PB (droite) et M8_SF (gauche). ©HE-Arc CR, 2015.

Figure 64 : Emplacement des prélèvements M8_PA (droite) et M8_PF (gauche). ©HE-Arc CR, 2015.

Figure 65 : Emplacement des prélèvements M7_PB (droite) et M7_SG (gauche). ©HE-Arc CR, 2015.

Figure 66 : Emplacement des prélèvements M7_PA (droite) et M7_PG (gauche). ©HE-Arc CR, 2015.

9. Fournisseurs

Produit	Composition	Fabricant	Fournisseur	
Arbocel [®] BWW40	Pulpe de cellulose	Kremer Pigmente GmbH Hauptstrasse 41-47 88317 Aichstetten Deutschland Tel : +49 7565 914480, Fax : +49 7565 1606 Site : www.kremer-pigment Mail : kremer-pigmente@t	& Co. <u>ite.de</u> -online.de	
Dionex [®] IC-90 et Chromeleon [®]	Appareil de chromatographie ionique et programme d'interprétation	Thermo Fisher Scientific (Switzerland) AG Neuhofstrasse 11 4153 Reinach Suisse Tel : +41 61 716 77 00 Fax : +41 61 716 77 01 Mail : switzerland.dionex.ch@thermofisher.com		
Film alimentaire Tangan [®] n°11	Film de polyéthylène A conserver entre -30 et +175°C	Fédération des coopérat 8031 Zurich Suisse Tel : +41 800 84 0848 Site : <u>www.migros.ch</u> Mail: <u>m-infoline@migros.c</u>	ives Migros Limmatstrasse 152	
Filtre ALCO® FF-010	Filtre à carburant Polymère thermoplastique transparent + Filtre en papier jaune	ALCO Filter Gmbh Auf"m Rottland 1 57577 Hamm/Sieg Deutschland Tel : +49 2682 953 30 Fax : +49 2682 953 320 Site : www.alcofilters.com/en- gb/home/ Mail : alcogermany@t- online.de	Suter Kunststoffe AG Aefligenstrasse 3 3312 Fraubrunnen Suisse Tel : +41 31 763 60 60 Fax : +41 31 763 60 61 Site : http://www.swiss-composite.ch/ Mail : info@swiss-composite.ch	
Kaolin « Gleiblish »	Silicate d'alumine	Kremer Pigmente GmbH Hauptstrasse 41-47 88317 Aichstetten Deutschland Tel : +49 7565 914480, Fax : +49 7565 1606 Site : www.kremer-pigmen Mail : kremer-pigmente@t	& Co.	
Papier japon KULG®	Fibres de cellulose de densité 9g/m ²	KLUG-CONSERVATION Zollstraße 2 87509 Immenstadt Deutschland Tel : +49 8323 9653 30 Fax : +49 8323 9653 399 3 Mail : info@klug-conservat Site : www.klug-conservat	30 tion.fr ion.fr	

HAGAPERI ®	Perlite fine et	HAGA AG Naturbaustoff	ρ
	arossière	Amselweg 36	•
	giossiere	F102 Dupperovil	
		Suisse	
		Tel : + 41 62 889 18 18	
		Fax : +41 62 889 18 00	
		Mail : info@haganatur.ch	
Planelle	Terre cuite	Ziegelei Rapperswil	Morandi Frères SA
« Hartton »		Louis Gasser AG	Route des Troches 1
			1562 Corcelles-près-Paverne
		2255 Depercuil DE	Suisso
		3255 Rapperswil BE	
		Suisse	1 +41 26 662 55 55
		T +41 31 879 65 00	F +41 26 662 55 29
		F +41 31 879 65 99	Site : <u>www.morandi.ch</u>
Parafilm®	Film	Bemis Packaging	Sigma-Aldrich Chemie GmbH
	thermoplastique	France	Industriestrasse 25
		ZAC Les Vergers de la	Postfach
		Quincanfrogne	0471 Buche SG
			Suisso
		TOT Allee Charles	
		Nicolle	Tel: +41 81 755 25 11
		27310 Bourg-Achard	Fax : +41 81 755 28 15
		France	Site : <u>www.sigmaaldrich.com</u>
		Tel : +33 2 77 18 80 01	Mail : fluka@sial.com or
		Fax : +33 2 77 18 80 10	cheorders@sial.com
		Site www.parafilm.com	
		Mail :	
		norofilm@bomio.com	
Coble de avert=	0:0		
Sable de quartz	SIO ₂	Carlo Bernasconi SA	
(0.3-0.9mm et		Riedbachstrasse 51	
(0.3-0.9mm et 0.06-0.3mm)		Riedbachstrasse 51 3027 Berne	
(0.3-0.9mm et 0.06-0.3mm)		Riedbachstrasse 51 3027 Berne Suisse	
(0.3-0.9mm et 0.06-0.3mm)		Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00	
(0.3-0.9mm et 0.06-0.3mm)		Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48	
(0.3-0.9mm et 0.06-0.3mm)		Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr	
(0.3-0.9mm et 0.06-0.3mm)		Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch	
(0.3-0.9mm et 0.06-0.3mm)	K.CO.	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch	Sigma Aldrich Chamia CmbH
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : <u>www.carloag.ch/fr</u> Mail : <u>info@carloag.ch</u> Fluka Analytical	Sigma-Aldrich Chemie GmbH
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical	Sigma-Aldrich Chemie GmbH Industriestrasse 25
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K ₂ CO ₃ CaSO ₄ x 2H ₂ O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com_or
(0.3-0.9mm et 0.06-0.3mm) Sels	K ₂ CO ₃ CaSO ₄ x 2H ₂ O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K ₂ CO ₃ CaSO ₄ x 2H ₂ O	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCl	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K ₂ CO ₃ CaSO ₄ x 2H ₂ O NaCl NaNO ₃	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Merck (Suisse) SA Chamerstrasse 174 6300 Zoug Suisse Tel : +41 (0) 41 729 22 22 Fax : +41 (0) 41 729 22 00	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCl NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Merck (Suisse) SA Chamerstrasse 174 6300 Zoug Suisse Tel : +41 (0) 41 729 22 22 Fax : +41 (0) 41 729 22 00 Site : www.merckserono.c	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Mail : fluka@sial.com Mail : fluka@sial.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Mail : fluka@sial.com Mail : fluka@sial.com Mail : fluka@sial.com Suisse Tel : +41 (0) 41 729 22 22 Fax : +41 (0) 41 729 22 00 Site : www.merckserono.com www.merck-pm.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com
(0.3-0.9mm et 0.06-0.3mm) Sels	K2CO3 CaSO4 x 2H2O NaCI NaNO3 Na2SO4	Riedbachstrasse 51 3027 Berne Suisse Tel : +41 31 990 98 00 Fax : +41 31 990 98 48 Site : www.carloag.ch/fr Mail : info@carloag.ch Fluka Analytical Part of the Sigma-Aldrich Chemie Group Mail : fluka@sial.com Mail : fluka@sial.com Mail : fluka@sial.com Mail : fluka@sial.com Suisse Tel : +41 (0) 41 729 22 22 Fax : +41 (0) 41 729 22 00 Site : www.merckserono.c www.merck-pm.com www.merck-pm.com	Sigma-Aldrich Chemie GmbH Industriestrasse 25 Postfach 9471 Buchs SG Suisse Tel : 081 755 25 11 Fax : 081 755 28 15 Site : www.sigmaaldrich.com Mail : fluka@sial.com or cheorders@sial.com

-	1	
Spectroquant®	Appareil de	Merck (Suisse) SA
Multy	titration	Chamerstrasse 174
	(notamment	6300 Zoug
	ammonium)	Suisse
		Tel : +41 41 729 22 22
		Fax : +41 41 729 22 00
		Site : <u>www.merckserono.com</u>
		www.merck-pm.com
		www.merckmillipore.ch
		Mail : <u>info@merck.ch</u>
Varian [®] SPS3	Appareils de	Varian Medical System
et Varian [®] 710-	détection des	P.O. Box 38
ES	cations	1714 Heitenried
		Suisse
		Tel : +41 26 495 32 58
		Fax : +41 26 495 32 59
		Site : https://www.varian.com/

10. Fiches techniques et de sécurité (DS et SDS)

10.1 Liste des fiches techniques et de sécurité

* Matériaux de compresses

- Arbocel[®] BWW40 (fiche technique, fiche de sécurité)
- Kaolin « Gleiblish » (fiche technique, fiche de sécurité)
- Perlite HAGAPERL[®] (fiche technique)
- Sable de quartz 0.06-0.3mm (fiche technique)
- Sable de quartz 0.3-0.9mm (fiche technique, fiche de sécurité)

Sels

- CaSO₄ (fiche technique, fiche de sécurité)
- KCO (fiche technique, fiche de sécurité)
- NaCl (fiche technique, fiche de sécurité)
- Na₂SO₄ (fiche technique, fiche de sécurité)
- Na₂NO₃ (fiche technique, fiche de sécurité)

Film de recouvrement des planelles

- Papier japon KLUG[®] (fiche technique)
- Parafilm[®] M (fiche technique)

59770 Arbocel[®] BWW 40

Arbocel® are environmentally friendly cellulose fibers which are gained from renewable raw materials.

Technical Information:

Raw Material:	pure cellulose
Description:	medium sized fibers, white
CAS No.:	9004-34-6

Physical and chemical Properties:

Cellulose content:	approx. 95 %
Average fiber length:	200 µm
Average fiber thickness:	20 µm
Bulk weight:	110 g/l - 145 g/l
Whiteness (absolute value at 461 nm)	:86 % ± 5 %
Ignition loss (850°C, 4 h):	approx. 0.3 %
pH-Wert	6 ± 1

Sieve Analysis

Sieve residue:	300 µm	100 µm	32 µm
	max. 0.5 %	max 20 %	max. 65 %

Application:

Arbocel[®] can be used as thickening agent, as reinforcing agent, as absorbent and extender, or as filling agent.

Page 1 of 1 Dr. Georg Kremer, Dipl.-Chemiker, Farbmühle, D-88317 Aichstetten/Allgäu, Telefon +49-7565-914480, Telefax +49-7565-1606 kremer-pigmente@t-online.de, www.kremer-pigmente.com

Materia According	II Safety Data Sheet g to regulation (EC) No. 1907/2006 (REA	CH)	KREMER
59770	Arbocel® BWW 40		PIGMENTE
			Page 1
Revised	edition: 22.04.2013	Version: 7	Printed: 11.06.2014
1.	Identification of the Substance/Mi	xture and of the Company/Undertaking	3
1. 1.	Product Identifier		
	Product Name:	Arbocel® BWW 40	
	Article No.:	59770	
1. 2.	Relevant identified Uses of the Substance or	Mixture and Uses advised against	
	Identified uses:		
	Uses advised against:		
1. 3.	Details of the Supplier of the Safety Data She	et	
	Company:	Kremer Pigmente GmbH & Co. KG	
	Address:	Hauptstr. 41-47, 88317 Aichstetten, Germai	ny
	Tel./Fax.:	Tel +49 7565 914480, Fax +49 7565 1606	
	Internet:	www.kremer-pigmente.de	
	EMail:	info@kremer-pigmente.de	
1. 4.	Emergency No.		
	Emergency No.:	+49 7565 914480 (Mon-Fri 8:00 - 17:00)	
2.	Hazards Identification		
2. 1.	Classification of the Substance or Mixture		
	Classification according to EC Regulation 1272/2008		
		This product is not classified as hazardous a CLP/GHS Directive.	according to the
	Classification according to EC Regulation No. 67/548 or No. 1999/45	The material is not subject to classification a	according to EC lists.
	Safety Phrases:		
	Possible Environmental Effects:		
2. 2.	Label Elements		
	Classification according to EC Regulation 1272/2008	This product does not require classification hazardous according to CLP/GHS.	and labelling as
	Hazard designation:	Not applicable.	
	Signal word:		
	Hazard designation:		
	Safety designation:		
	Hazardous components for labelling:		
2. 3.	Other Hazards	This material is combustible, but not easily i	nflammable.

Composition/Information on Ingredients

2

Materia Accordine	II Safety Data Sheet g to regulation (EC) No. 1907/2006 (F	REACH)	KREMER
59770	Arbocel® BWW 40		PIGMENTE
			Page 2
Revised	edition: 22.04.2013	Version: 7	Printed: 11.06.2014
3.			
3. 1.	Substance		
3. 2.	Mixture		
	Chemical Characterization:	100 % Cellulose. CAS No.: 9004-34-6; El	NECS: 232-674-9
	Hazardous Ingredients:		
	Additional information:	Exempted from the mandatory REACH R	egistration (Annex IV and
4.	First Aid Measures	,	
4. 1.	Description of the First Aid Measures		
	General information:		
		Seek medical attention in case of complai	ints.
	After inhalation:		
		Supply fresh air.	
	After skin contact:		
		No special measures required.	
	After eye contact:		
		Rinse eyes with water.	
	After ingestion:	Seek medical alternion in initiation persists	
	Alter ingestion.	No special measures required.	
4. 2.	Most important Symptoms and Effects, b	poth Acute and Delayed	
	Symptoms:	-	
	-,	None known.	
	Effects:		
		No further information available.	
4. 3.	Indication of any Immediate Medical Atte	ntion and special Treatment needed	
	Treatment:		
		Treat symptomatically.	
5.	Fire-Fighting Measures		
5. 1.	Extinguishing Media		
	Suitable extinguishing media:		
		Foam, carbon dioxide (CO2), extinguishin	ig powder, water spray.
	Unsuitable extinguishing media:	Mater with full int	
5.0	Created Herendo evising from the Culeton	Water with full jet.	
J. Z.	Special nazards arising from the Substal	ice of Mixture	
	Special hazards:	In case of fire: formation of carbon monoy	vide and dioxide
5.3	Advice for Firefighters		
	Protoctivo oquinment		
	Frotective equipment:		3

Materia According	II Safety Data Sheet g to regulation (EC) No. 1907/2006 (REA	NCH)	KREM	ER
59770	Arbocel® BWW 40		PIGME	NTE
			Page	3
Revised e	edition: 22.04.2013	Version: 7	Printed:	11.06.2014
		Wear self-contained respiratory protection	ve device.	
	Further information:			
		Fire class: A (ordinary combustibles).		
6.	Accidential Release Measures			
6. 1.	Personal Precautions, Protective Equipment	and Emergency Procedures		
	Personal precautions:			
		Avoid formation of dust.		
		Respiratory protection in case of formati	ion of vapors/du	ist/aerosol.
6. 2.	Environmental Precautions			
	Environmental precautions:			
		No special measures required.		
6. 3.	Methods and Material for Containment and C	Cleaning Up		
	Methods and material:			
		Clean up mechanically. Avoid dust forma	ation.	
6.4	Reference to other Sections	Avoid dust formation.		
0. 4.		Protective clothing, see Section 8.		
		See Section 13 for information on dispos	sal.	
7.	Handling and Storage			
7. 1.	Precautions for Safe Handling			
	Instructions on safe handling:			
		Treat like any combustible material whic	h contains dust	y parts with
		special precautionary measures. Avoid formation and deposition of dust	Provide adequa	te
		ventilation.	r ionao adogad	
	Hygienic measures:			
		No further measures, see Section 8.		
7. 2.	Conditions for Safe Storage, including any l	ncompatibilities		
	Storage conditions:			
		Store in tightly sealed containers in a dry	y room.	
		Store in closed container and keep prod Protect against humidity and water	uct ary.	
	Requirements for storage areas and containers:			
		No special measures necessary.		
	Information on fire and explosion protection:			
		Combustible material.		
		Risk of dust explosion.	not smake Tel	
		measures to prevent electricity static dis Dust explosion class 1 (Kst-value >0-20	not smoke. Tak scharge. 0 bar m/s).	(e
	Storage class (VCI):		/-	
				4

According to regulation (EC) No. 1907/2006 (REACH)

59770 Arbocel® BWW 40

			Page	4
Revise	d edition: 22.04.2013	Version: 7	Printed:	11.06.2014
		11; Combustible solids		
	Further Information:			
		Shelf-life: at least 5 years		
		Maximum storage time: not releva	nt	
7. 3.	Specific End Use(s)			
	Further information:			
8.	Exposure Controls/Personal Pro	otection		
8. 1.	Parameters to be Controlled			
	Parameters to be controlled (DE):			
		TRGS 900		
		TLV: 10 mg/m3 inhalable fraction	(general dust limit)	
		TLV: 3 mg/m3 air-borne fraction ('general dust limit)	
	Parameters to be controlled (EC):			
		Cellulose (9004-34-6): AGW (BE)	10 mg/m3	
		Cellulose (9004-34-6): AGW (CH)	: 3 mg/m3 (airborne	aerosol)
	Derived No-Effect Level (DNEL):			
		No values available.		
	Predicted No-Effect Concentration (PNEC):			
		No values available.		
	Additional Information:			
8. 2.	Exposure Controls			
	Technical protective measures:			
	,	Provide adequate ventilation/exha	ust system.	
	Personal Protection			
	General protective measures:			
	General procedure mediates.	Keep away from foodstuffs and dr during work. Wash hands before l	inks. Do not eat, dri breaks and at the en	nk or smoke Id of work.
	Respiratory protection:	-		
	Respiratory protection.	If exposure limit is exceeded: dust solid and liquid particles DIN 3181	t mask with particle	filter P2 (for
	Lland protection.		,.	
	Hana protection:	Not required		
	Protective glove material:			
	File protection:			
	Eye protection.	Safety glasses (FN 166)		
	Body protection:			
	Environmental precautions:	No special macauras required		
		No special measures required.		

9. Physical and Chemical Properties

According to regulation (EC) No. 1907/2006 (REACH)

59770 Arbocel® BWW 40

Devies		Varian 7	Page	5
9 1	Information on Basic Physical and Che	version: /	Printed:	11.06.2014
0. 1.	Form:	fibres		
	Color:	white		
	Odor:	odorless		
	Odor threshold:	000/1033		
	Ouor threshold.	No information available.		
	pH-Value:	5 - 7.5 (100 g/l H2O, 20℃)		
	Melting temperature:			
		not applicable		
	Boiling temperature:			
		not applicable		
	Flash point:	not ovojichlo		
	European time and a	not avaliable		
	Evaporation rate:	not applicable		
	Flammability (solid. gas):			
	(, <u>-</u> ,	not applicable		
	Upper explosion limit:	11000 g/m3		
	Lower explosion limit:	30 g/m3		
	Vapor pressure:			
		not applicable		
	Vapor density:			
	Density:	ca. 1.5 g/cm3		
	Solubility in water:	insoluble (20 $^{\circ}$ C)		
	Coefficient of variation (n- Octanol/Water):			
		not applicable		
	Auto-ignition temperature:			
	_	No information available.		
	Decomposition temperature:	ca. 200℃		
	Viscosity, dynamic:	not applicable		
	Explosivo proportios:			
	Explosive properties.	Risk of dust explosion.		
	Oxidizing properties:			
		No information available.		
	Bulk density:	120 - 220 kg/m3		
9. 2.	Further Information			
	Solubility in solvents:			0

According to regulation (EC) No. 1907/2006 (REACH)

59770 Arbocel® BWW 40

			Page 6
Revise	d edition: 22.04.2013	Version: /	Printed: 11.06.2014
	Purning class:		
	Solvent content:		
	Solvent content.		
	Other information:	Minimum ianition eneray: > 30 m	I
		Minimum ignition temperature of Flammability and general dust fin burning class 5	a dust cloud: 400℃ e behavior of deposited dust:
		Mininum ignition temperature of a temperature): > 300 °C	5 mm dust layer (glow
		Maximum explosion pressure: <	9.5 bar
10.	Stability and Reactivity		
10.1.	Reactivity	No information available	
10.2	Chemical Stability	No mornauon available.	
10.2.	onennoai otability	None known.	
10.3.	Possibility of Hazardous Reactions		
		No information available.	
10.4.	Conditions to Avoid		
	Conditions to avoid:	Ducto at fue us has at	
	T he second state of the	Protect from neat.	
	Thermal decomposition:	> 200℃	
10.5.	Imcompatible Materials		
		No information available.	
10.6.	Hazardous Decomposition Products		
10.7	Further Information	Carbon monoxide and dioxide.	
11			
11.1.	Information on Toxicological Effects		
		No information available.	
	Acute Toxicity		
	LD50, oral:		
	LD50, dermal:		
	LC50, inhalation:		
	Primary effects		
	Irritant effect on skin:		
		Non irritating	
	Irritant effect on eyes:		7

According to regulation (EC) No. 1907/2006 (REACH)

59770 Arbocel® BWW 40

Revise	d edition: 22.04.2013	Version: 7	Page Printed:	7
		Non-irritating to eves	Ffinteu.	11.00.2014
	Inhalation:			
	innaiaton.	Non irritating.		
	Ingestion:			
		No information available		
	Sensitization:			
	Mutagenicity:	Not sensitizing.		
		No data available		
	Reproductive toxicity:			
	Reproductive toxicity.	No negative effects.		
	Cancerogenity:			
		No negative effects.		
	Teratogenicity:			
		No information available.		
	Specific target organ toxicity (STOT):	No data available		
	Additional toxicological information:	No data avaliable.		
	Additional toxicological information.	Product is non-toxic.		
12.	Ecological Information			
12. 1.	Aquatic Toxicity			
		No toxicity expected.		
	Fish toxicity:			
	Daphnia toxicity:			
	Bacteria toxicity:			
	Algae toxicity:			
12. 2.	Persistency and Degradability			
12 2	Bioaccumulation	No information available.		
12. J.	Bloaccumulation	No bioaccumulation expected.		
12. 4.	Moblity			
		Not expected to adsorb on soil.		
12. 5.	Results of PBT- und vPvP Assessment	No data available		
12 6	Other Adverse Effects	No data avallable.		
12. 0.	Water bazerd along:			
	Water Hazaru Class.	Not hazardous.		
	Behaviour in sewage systems:			
	Further ecological effects:			
	-	Natural product. Environmentally not haza	ardous.	

According to regulation (EC) No. 1907/2006 (REACH)		ACH)	KREMER	
59770 Arbocel® BWW 40			PIGMENTE	
			Page 8	
Revised	edition: 22.04.2013	Version: 7	Printed: 11.06.2014	
	AOX Value:			
13.	Disposal Considerations			
13. 1.	Waste Treatment Methods			
	Product:	Decouver or require if possible		
		Recover of recycle if possible.		
	European Waste Code (EWC):	030399 - Wastes not otherwise specifie	ed	
	Incleaned nackaging			
	Uncleaned packaging.	Uncontaminated packaging may be rec	cycled. Completely empty	
		packaging can be disposed of with the	regular waste.	
	Waste Code No.:			
	T	150106 - Mixed packaging.		
14.	I ransport information			
14. 1.				
14.2	ADR, IMDG, IATA			
14. 2.				
	ADR/RID:	No hazardous goods according to ADR	? (land transportation).	
	IMDG/IATA	······································		
		No hazardous goods according to IMD	G.	
14. 3.	Transport Hazard Classes			
	ADR Class:			
		not applicable		
	Hazard no.:			
	Classification code:			
	Tunnel no.:			
	IMDG Class (sea):			
	Hazard no.:			
	EmS No.:			
	IATA Class:			
		not applicable		
	Hazard no.:			
14. 4.	Packaging Group			
	ADR/RID:			
		not applicable		
	IMDG:			
	IATA:			
14. 5.	Environmental Hazards	····		
		Not classified as environmentally haza	rdous. 9	

Material Safety Data Sheet According to regulation (EC) No. 1907/2006 (REACH)			KRE	MER
59770	Arbocel® BWW 40		PIGM	ENTE
			Page	9
Revised	edition: 22.04.2013	Version: 7	Printed:	11.06.2014
14. 6.	Special Precautions for User	Not classified as a dangerous good under	transport re	egulations.
14. 7.	Transportation in Bulk according to Annex II	of MARPOL 73/78 and IBC-Code not applicable		9
14. 8.	Further Information			
15.	Regulatory Information			
15. 1.	Safety, Health and Environmental Regulations	s/Legislation specific for the Substance or Mixture)	
	Water hazard class:			
		0, not hazardous		
	Local regulations on chemical accidents	:		
	Employment restrictions:			
	Restriction and prohibition of application	:		
	Technical instructions on air quality:			
		5.2.1. Total dust, including fine dust.		
15. 2.	Chemical Safety Assessment			
		A Chemical Safety Assessment has not be product.	en carried	out for this
15. 3.	Further Information			
		Listed in:		
		EINECS (EC), TSCA (US), DSL (CA)		
16.	Other Information	This product should be stored, handled an with good hygiene practices and in conforr regulations. This information contained her present state of knowledge and is intended from the point of view of safety requirement therefore not be construed as guaranteeing	d used in ac nity with an rein is base d to describ nts. It should g specific p	ccordance y legal d on the e our product d be roperties.

58250 Kaolin, China Clay

Kaolin (porcelain earth) is an aluminium silicate, with the mineral kaolinite. It develops by decomposition and transformation of silicate rocks. Pure kaolin is white in colour, in case of quartz and feldspar contents, the kaolin is grey-yellowish (raw kaolin, kaolin sand).

Kaolines are aluminium-silicate-hydrates with clearly definable crystal lattice of plate-like, hexagonal structure. The typical chemical formula is:

SiO ₂	49.3 %
Al_2O_3	35 %
Fe ₂ O ₃	0.6 %
TiO ₂	0.5 %
K ₂ O	2.1 %
Na ₂ O	0.1 %
Apparent density	350 kg/m^3
Degree of whiteness	74.0 %
Loss on ignition	11.7 %
Humidity	< 1.0 %
pH Value	6.5
-	
Particle size distribution:	
>45 µm	0.03 %
< 2 µm	51 %
D50	2.0 µm

Kaolin is chemically very resistant, even against strong acids. It decreases the crack formation of the final product and increases the surface stability.

In paints and lacquers, kaolin not only acts as inert filler, it also gives them positive film properties. Particle shape and charge distribution influence the rheological behaviour, the obtainable thioxtropy prevents pigment sedimentation and the lamellar structure shows positive mechanical values, high reflexion property and covering power with simultaneous improvement of the surface hardness of the final product.

Page 1 of 1 Dr. Georg Kremer, Dipl.-Chemiker, Farbmühle, D-88317 Aichstetten/Allgäu, Telefon +49-7565-914480, Telefax +49-7565-1606 kremer-pigmente@t-online.de, www.kremer-pigmente.com

Safety Data Sheet According to regulation (EC) No. 1907/2006 (REACH)

58250 - Kaolin

Revised edition: 08.06.2009

1. Identification of the Substance/Preparation and of the Company/Undertaking

Kaolin
58250
Artists' and Restoration Material
Kremer Pigmente GmbH & Co. KG
Hauptstrasse 41-47, D 88317 Aichstetten
Tel +49 7565 914480, Fax +49 7565 1606
www.kremer-pigmente.de, kremer-pigmente@t-online.de
+49 7565 914480, Mon-Fri 8:00 - 17:00

2. Hazard Identification

Hazard designation:

Product is not considered to be hazardous according to EC Guideline 67/548/EWG.

3. Composition/Information on Ingredients

Chemical Characterization:	Kaolinite Al2(Si2O7)*2H2O
	CAS No. 1318-74-7 (Kaolin 1332-58-7)
	EINECS 215-286-4
	Contains variable amounts of the minerals mica, feldspar and quartz.

4. First Aid Measures

After inhalation:	Remove person to fresh air. In case of complaints consult a physician.
After skin contact:	Wash off with water.
After eye contact:	Rinse open eyes with plenty of water. In case of discomfort seek medical help.
After ingestion:	No special measures required.

5. Fire-Fighting Measures

Suitable extinguishing media: Protective equipment:

6. Accidental Release Measures

Personal precautions: Environmental precautions: Methods of cleaning/absorption:

7. Handling and Storage

Handling Instructions on safe handling: Use extinguishing media for surrounding fire. No special measures required.

Together with water product causes slippery surfaces. No special measures required. Take up mechanically. Rinse with lots of water.

Avoid dust formation.

Page 1 of 3
Safety Data Sheet According to regulation (EC) No. 1907/2006 (REACH)

58250 - Kaolin

Rev	vised edition: 08.06.2009	printed: 15.0
	Information on fire and explosion protection:	No special measures necessary.
	Storage	
	Storage conditions:	Store in a cool and dry place.
	Storage class (VCI):	13; Non combustible solids.
8.	Exposure Controls/Personal Protect	ction
	Additional information about	Adequate ventilation to control airborne concentrations below the
	design of technical systems:	exposure limits.
	Components with workplace control parameters (Germany):	TRGS 900
	control parameters (Certifiany).	Name/Value: 3 mg/m3 (8h) general dust limit air-borne fraction.
		Name/Value: 10 mg/m3 (8h) general dust limit inhalable fraction.
	Personal protective equipment	
	General protective measures:	Keep away from foodstuffs and drinks. Do not eat, drink or smoke during work. Wash hands before breaks and at the end of the shift.
	Respiratory protection:	In case of formation of dust.
	Hand protection::	Not required
	Eye protection:	Not required.
	Body protection:	Not required.
9.	Physical and Chemical Properties	
	Form:	powder
	Color:	white
	Odor:	odorless
	Melting temperature:	>1700°C
	Flash point:	not applicable
	Density:	2.65 g/cm3
	Bulk density:	350 - 450 kg/m3
	Solubility in water:	insoluble
	pH-Value:	5-7 (100 g/l H2O)
10.	Stability and Reactivity	
	Thermal decomposition/Conditions to be avoided:	Stable if used according to specifications.
	Hazardous decomposition products:	None known.
11.	Toxicological Information	
	Further toxicological effects:	Product is not toxic.
12.	Ecological Information	
	Further ecological effects:	No special effects or hazards known.
	Further information	

Page 2 of 3

Safety Data Sheet According to regulation (EC) No. 1907/2006 (REACH)

Acc	According to regulation (EC) No. 1907/2006 (REACH)		
58250 - Kaolin			RREMER
Rev	ised edition: 08.06.2009		PIGMENTE printed: 15.06.2009
	Water hazard class:	0	
13.	Disposal Considerations		
	Product: Waste Code No.:	Dispose of according to official national and loca 010403	al regulations.
	Uncleaned packaging:	Clean packaging material can be recycled.	
14.	Transport Information		
	Further information:	Not classified as a dangerous good under transpo	ort regulations.
15.	Regulatory Information		
	Designation according to EC guidelines:	The material is not subject to classification accord	ding to EC lists.
	Water hazard class:	0, not hazardous	
16.	Other Information		

This product should be stored, handled and used in accordance with good hygiene practices and in conformity with any legal regulations.

This information contained herein is based on the present state of knowledge and is intended to describe our product from the point of view of safety requirements. It should be therefore not be construed as guaranteeing specific properties.

> Page 3 of 3

4 HAGAPERL Isolier-Trockenschüttung

Universell einsetzbare, preisgünstige, anorganische, ungeziefersichere Schüttung für Böden, Wände und Decken, jedoch nicht für belastete Schüttung bei Bodenaufbauten. HAGAPERL kann auch als Füllschüttung bei Kaminen verwendet werden.

HAGAPERL remblai sec d'isolation

Remblai d'emploi universel, économique, inorganique, résistant contre la vermine pour sols, parois et plafonds; ne convient pas comme remblai pouvant être chargé. HAGAPERL peut aussi être utilisé comme remplissage dans la construction de cheminée.

HAGAPERL ist eine Dämmstoffkörnung aus expandiertem Perlit-Gestein, ein reines Naturprodukt, ohne irgendwelche chemische Zusätze oder Bitumen, daher baubiologisch einwandfrei.

HAGAPERL ist gut rieselfähig, leicht schüttbar und deshalb auch einfach zu verarbeiten und abzuziehen.

HAGAPERL ist unbrennbar, schrumpft und verrottet nicht und bildet eine

fugenlose Dämmschicht ohne Kältebrücken.

HAGAPERL est constitué de perlite expansée de granulométrie choisie afin d'obtenir l'effet isolant. C'est un produit purement naturel, sans additifs chimiques et bitume; de ce fait, il convient parfaitement pour la construction biologique.

HAGAPERL se répand très bien, est facile à épandre et par là peut être travaillé et réglé de façon simple.

HAGAPERL n'est pas combustible, ne rétrécit

pas et est imputrescible; il donne une couche isolante sans joint et par conséquent sans ponts de froid.

Technische Daten:

Données techniques:

Ergiebigkeit:	Rendement:	ca./env. 12,5 Säcke/sacs /m ³
Schüttgewicht:	Poids de remblayage:	ca./ <i>env</i> . 90–110 kg/m ³
Korngrösse:	Dimensions des grains:	Ø ca./env. 6 mm
Wärmeleitfähigkeit:	Conductibilité thermique:	$\lambda = ca./env. 0,055 W/mK$
Dampfdiffusions- widerstandszahl:	Coefficient de résistance à la diffusion de vapeur:	μ = ca./ <i>env</i> . 3
Brandkennziffer:	Classe de tenue au feu:	nicht brennbar/non combustible
Schmelzpunkt:	Point de fusion:	1000°
Lieferform:	Forme de livraison:	Plastiksäcke à 80 l = ca. 8 kg Sacs en plastique de 80 l = env. 8 kg
		Palette à 36 Säcke/sacs = ca./env. 288 kg

FICHE PRODUIT

Carlo Bernasconi SA

Sables de quartz A 0.06 - 0.3 mm

Description du produit

Les sables et granulés de Quartz cristallisés et naturels sont soigneusement lavés et classés mécaniquement. C'est par un procédé moderne qu'ils sont séchés au four, tamisés et stockés dans les silos par granulométrie.

	Informations complémentaires
Granulométrie en mm	0.06 - 0.30
Forme du grain	Naturellement arrondi
- Andrew Contraction	Blazz
Couleur	Blanc
Emballage	Sac en plastique de 25 kg
Lieu du dépôt	Zurich
Etát	Séché au four
	Données Techniques
1 August also Make	
Curete seton words	
Densité en Vrac en kg/m ¹	1'350
2))))((()))))))))))))))))))))))))))))))	
2))))/////////////////////////////////	Références Chimiques
SiO2	98.80%
MgO	0.81%
	h 20%
Al203	0.20%
Perte par calcination	0.10%
Perte par calcination	0.10%
Perta par calcination 1/20 Fer0a	0.10%
Perte par calcination K20 Fe203	0.10%
Perte par calcination K2O Fe2O3 Na2O	0.10% 0.10% 0.10%
Perta par calcination V ₂ O Fe ₂ O ₃	0.10% 0.10% 0.10%

Seite 1 von 1

FICHE PRODUIT

Carlo Bernasconi SA

Sables de quartz A 0.30 - 0.90 mm

Description du produit

Les sables et granulés de Quartz cristallisés et naturels sont soigneusement lavés et classés mécaniquement. C'est par un procédé moderne qu'ils sont séchés au four, tamisés et stockés dans les silos par granulométrie.

	Informations complémentaires
Prix par	sac
Granulométrie en mm	0.30 - 0.90
Forme) dự grain	Naturellement arrondi
Couleur	Gris
Emballage	Sac en plastique de 25 kg
Lieu du depót	Bärschwil, Berne, Zurich
The second secon	Séché au four
))) <i>((@)</i>))((@)
	Données Techniques
Dureté selon Mohs	¥/////////////////////////////////////
Densité en vrac en kg/m³	1400
Poids spécifique en kg/m ³	2'650
	<u></u>
	Références Chimiques
502	97.7%
Al203	1.12%
K20 Na20	0.85%
Perte par calcination	0.25%
Тю2	0.06%
CaO MgO	0.05%
////// Fe2O TIO2	0.03%

Seite 1 von 1

SAFETY DATA SHEET

according to Regulation (EU) No. 2015/830

Quartz sand

1. Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product code	None.
Synonyms	None.

1.2. Relevant identified uses of the substance or mixture and uses advised against

Use of the Substance/Mixture	Construction.
------------------------------	---------------

1.3. Details of the supplier of the safety data sheet

Company/Undertaking Identification	Carlo Bernasconi AG Hohlstrasse 444 8048 Zurich / Switzerland Tel. 0848 38 80 00 Fax. 0848 38 80 01 r.nitz@carloag.ch
1.4. Emergency telephone number	+41 44 251 51 51 (Tox Center)
Issuing date	23.06.2015
Version	GHS 1

2. Hazards identification

2.1. Classification of the substance or mixture

Classification according to Regulation (EC) No. 1272/2008	The substance or mixture is not classified.	
In accordance with Regulation (EC) labelled.	No. 1272/2008, the product does not need to be classified nor	
Additional information	For the full text of the phrases mentioned in this Section, see Section 16.	
0		

Quartz sand GHS 1

2.2. Label elements

Signal Word	-
Hazard Statements	None.
Precautionary statements	P260d: Do not breathe dust.
Additional advice	None.
Product identifier	None.
2.3. Other hazards	Depending on the handling and use (eg grinding, drying), the formation of air transmitted respirable crystalline silica is possible. Prolonged and / or massive inhalation of respirable crystalline silica can cause dust lung disease (silicosis). Main symptoms of silicosis are cough and difficulty in breathing. On occasional exposure to respirable crystalline silica, dust protection and monitoring measures should be in place.

3. Composition/information on ingredients

Chemical characterization

Hard sedimentary rock SiO2 containing.

Components		CLP Classification	Product identifier
Quarz	> 99%		CAS-No.: 14808-60-7 EC-No.: 238-878-4
Quarz (dust)	< 1%	STOT RE 2 H373i	CAS-No.: 14808-60-7 EC-No.: 238-878-4

For the full text of the phrases mentioned in this Section, see Section 16.

None.

Hazardous impurities

4. First aid measures

4.1. Description of first aid measures

Inhalation	It is recommended to bring the exposed person from the contaminated area to fresh air. Consult a physician for severe cases.
Skin contact	Wash with water and soap as a precaution.
Eye contact	Rinse thoroughly with plenty of water, also under the eyelids. If eye irritation persists, consult a specialist.
Ingestion	Clean mouth with water and drink afterwards plenty of water.
4.2. Most important symptoms and effects, both acute and delayed	Inhalation of dust may cause shortness of breath, tightness of the chest, a sore throat and cough. Avoid breathing dust.
Quartz sand	Drint Data 22.06.2015

GHS 1

4.3. Indication of any immediate None known. medical attention and special treatment needed

5. Firefighting measures

5.1. Extinguishing media	
Suitable extinguishing media	No special measures required.
Extinguishing media which must not be used for safety reasons	None.
5.2. Special hazards arising from the substance or mixture	The product itself does not burn.
5.3. Advice for firefighters	
Special protective equipment for firefighters	In the event of fire, wear self-contained breathing apparatus. Wear protective suit.
Specific methods	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.

6. Accidental release measures

6.1. Personal precautions	, protective equipment a	nd emergency procedures
---------------------------	--------------------------	-------------------------

Advice for non-emergency personnel	Avoid dust formation. Avoid breathing dust.
Advice for emergency responders	Avoid dust formation. Evacuate personnel to safe areas.
6.2. Environmental precautions	Do not flush into surface water or sanitary sewer system.
6.3. Methods and material for containment and cleaning up	Take up mechanically and collect in suitable container for disposal.
6.4. Reference to other sections	See chapter 8 and 13.

7. Handling and storage

7.1. Precautions for safe handling	Provide appropriate exhaust ventilation at places where dust is formed. Avoid dust formation. Avoid contact with eyes and skin.
7.2. Conditions for safe storage, including any incompatibilities	Store at room temperature in the original container. Keep container tightly closed. Keep in a dry place.
Quartz sand	Print Date 23.06.2015

GHS 1

7.3. Specific end use(s) No information available.

8. Exposure controls/personal protection

8.1. Control parameters	
Exposure limit(s)	No data is available on the product itself.
Quartz (CAS 14808-60-7) United Kingdom - Workplace Exposure Limits (WELs) - STELs United Kingdom - Workplace Exposure Limits (WELs) - TWAs	0.3 mg/m3 STEL (calculated, respirable) 0.1 mg/m3 TWA (respirable)
8.2. Exposure controls	
Occupational exposure controls	General industrial hygiene practice. Wash hands before breaks and at the end of workday. Avoid contact with the skin and the eyes.
Personal protection equipment	
Respiratory protection	Do not breathe dust or spray mist. Suitable mask with particle filter P3 (European Norm 143)
Hand protection	No special measures required.
Eye protection	Avoid contact with eyes. In case of dust formation wear tightly fitting goggles.
Skin and body protection	No special measures required.
Thermal hazards	No special measures required.
Environmental exposure controls	No special measures required.

9. Physical and chemical properties

9.1. Information on basic physical and chemical properties

Form Colour Odour Odour Threshold pH: Melting point/range: Boiling point/range: Flash point:	Grain. Powder. Light cream. Natural colour. Odourless. No information available. neutral >825 °C No information available. does not flash
Evaporation Rate: Flammability:	No information available. No information available.
Explosion limits:	No information available.
Vapour pressure:	No information available.
Vapor density:	No information available.
Quartz sand	Print Date 23.06.2015
GHS 1	

4/7

Relative density:	2.65 g/ml
Water solubility:	insoluble
Partition coefficient (n-	No information available.
octanol/water):	
Autoignition temperature:	No information available.
Decomposition temperature:	No information available.
Viscosity:	No information available.
Combustion/explosion hazards:	not hazardous
Oxidizing properties:	None

9.2. Other information

General Product Characteristics No information available.

10. Stability and reactivity

10.1. Reactivity	Reacts with acid with the evolution of CO2.
10.2. Chemical stability	No decomposition if used as directed.
10.3. Possibility of hazardous reactions	No hazards to be specially mentioned.
10.4. Conditions to avoid	Not required.
10.5. Incompatible materials	Acids.
10.6. Hazardous decomposition products	None under normal use.

11. Toxicological information

11.1. Information on toxicological effects

Acute toxicity	No data is available on the product itself. Quartz (CAS 14808-60-7) Oral LD50 Rat = 500 mg/kg (IUCLID)
Skin corrosion/irritation	None.
Serious eye damage/eye irritation	May irritate eyes.
Respiratory / Skin Sensitisation	None.
Carcinogenicity	Contains no ingredient listed as a carcinogen.
Germ cell mutagenicity	Contains no ingredient listed as a mutagen.
Reproductive toxicity	Contains no ingredient listed as toxic to reproduction.
Specific target organ toxicity (single exposure)	No data available.

Quartz sand GHS 1

Specific target organ toxicity (repeated exposure)	This product contains respirable quartz as an impurity, which is classified as STOT RE1 according to the criteria in the Regulation (EC) no. 1272/2008. Prolonged and/or massive exposure to dust containing respirable crystalline silica can cause silicosis. This disease is a nodular pulmonary fibrosis caused by inhalation and deposition of mineral dust.
Aspiration hazard	No data available.
Human experience	No data available.

12. Ecological information

12.1. Toxicity	No data available.
12.2. Persistence and degradability	Can be eliminated from water by sedimentation.
12.3. Bioaccumulative potential	Does not bioaccumulate.
12.4. Mobility in soil	No data available.
12.5. Results of PBT and vPvB assessment	No information available.
12.6. Other adverse effects	This product has no known eco-toxicological effects.

13. Disposal considerations

13.1. Waste treatment methods

Waste from residues / unused products	Dispose of in accordance with local regulations. EWC waste disposal No: 01 04 10. According to the European Waste Catalogue, Waste Codes are not product specific, but application specific.
Contaminated packaging	Offer rinsed packaging material to local recycling facilities.

14. Transport information

ADR/RID	Not required.
IMDG	Not required.
ΙΑΤΑ	Not required.
Further Information	Not classified as dangerous in the meaning of transport regulations.

Quartz sand GHS 1

15. Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Regulatory Information	In accordance with Regulation (EC) No. 1272/2008, the product does not need to be classified nor labelled.
Quartz (CAS 14808-60-7) EU - REACH (1907/2006) - Article 15(1) - Substances Regarded as Being Registered - Plant Health Products	Present (only uses as repellent may be authorised)
15.2. Chemical safety assessment	Excepted from the REACH obligation to register in accordance with Annex V, 7.

16. Other information

Key or legend to abbreviations and acronyms	CLP: Classification according to Regulation (EC) No. 1272/2008 (GHS/CLP)
Key literature references and sources for data	According to information supplied by the manufacturer.
Classification procedure	On basis of test data.
Full text of phrases referred to under sections 2 and 3	H373inh: May cause damage to lungs through prolonged or repeated exposure if inhaled.
Training advice	Workers must be informed about the silica content of the product and must be trained in the intended use of the product.
Instructions for use	Restricted to professional users.
Disclaimer	The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

Quartz sand GHS 1

SIGMA-ALDRICH°

sigma-aldrich.com

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Specification

Product Name: Calcium sulfate dihydrate - ACS reagent, 98%

Product Number: CAS Number: MDL: Formula: Formula Weight: 255548 10101-41-4 MFCD00149625 CaO4S · 2H2O 172.17 g/mol

CaSO₄ · 2H₂O

TEST	Specification
Appearance (Color)	White to Off-White
Appearance (Form)	Powder
X-Ray Diffraction	Conforms to Structure
Complexometric EDTA	98.0 - 102.0 %
Iron (Fe)	≤ 0.001 %
Heavy Metal (as Lead)	< 0.002 %
Potassium (K)	< 0.005 %
Magnesium (Mg)	- < 0.02 %
Sodium (Na)	- < 0.02 %
Strontium (Sr)	- < 0.05 %
Insoluble matter	- < 0.02 %
c = 3.3%. Dilute HCl	-
Chloride	< 0.005 %
Carbonate	– Pass
Miscellaneous Assay	Pass
Nitrate	
Meets ACS Requirements	Current ACS Specification
10th Edition	

Specification: PRD.0.ZQ5.10000045170

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

1 of 1

SIGMA-ALDRICH

sigma-aldrich.com FICHE DE DONNÉES DE SÉCURITÉ

conformément au Règlement (CE) No. 1907/2006 Version 5.1 Date de révision 24.04.2015 Date d'impression 30.06.2015

SEC	SECTION 1: Identification de la substance/du mélange et de la société/l'entreprise				
1.1	Identificateurs de produit Nom du produit	:	Calcium sulfate dihydrate		
	Code Produit Marque No REACH NoCAS	::	255548 Sigma-Aldrich Pas de numéro d'enregistrement disponible pour cette substance car cette substance ou ses usages sont exempts d'enregistrement, le tonnage annuel ne nécessite pas d'enregistrement ou bien l'enregistrement est prévu pour une date ultérieure 10101-41-4		
1.2	Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées				
	Utilisations identifiées	:	Substances chimiques de laboratoire, Fabrication de substances		
1.3	Renseignements concernant le fournisseur de la fiche de données de sécurité				
	Société	:	Sigma-Aldrich Chemie GmbH Industriestrasse 25 CH-9471 BUCHS		
	Téléphone Fax Adresse e-mail	: : :	+41 81-755-2511 +41 81-756-5449 eurtechserv@sial.com		
1.4	Numéro d'appel d'urgence				
	Numéro d'Appel	:	+41 81-755-2255		

+41`44-251-5151 (Tox-Zentrum)

SECTION 2: Identification des dangers

2.1 Classification de la substance ou du mélange

N'est pas une substance ni un mélange dangereux conformément au règlement (CE) No. 1272/2008. Cette substance n'est pas classée comme dangereuse au sens de la Directive 67/548/CEE.

145(CH)

2.2 Éléments d'étiquetage

d'Urgence

Le produit ne nécessite pas d'étiquetage conformément aux directives de la CE et aux réglementations nationales du pays concerné.

2.3 Autres dangers - aucun(e)

SECTION 3: Composition/informations sur les composants

3.1	Substances							
	Formule	:	$CaO_4S \cdot 2H_2O$					
	Poids moléculaire	:	172,17 g/mol					
	NoCAS	:	10101-41-4					
	NoCE	:	231-900-3					

Conformément à la réglementation, il n'est pas nécessaire de mentionner tous les composants.

Sigma-Aldrich - 255548

Page 1 de 7

SECTION 4: Premiers secours

4.1 Description des premiers secours

En cas d'inhalation

En cas d'inhalation, transporter la personne hors de la zone contaminée. En cas d'arrêt respiratoire, pratiquer la respiration artificielle.

En cas de contact avec la peau

Laver au savon avec une grande quantité d'eau.

En cas de contact avec les yeux

Rincer les yeux à l'eau par mesure de précaution.

En cas d'ingestion

Ne jamais rien faire avaler à une personne inconsciente. Se rincer la bouche à l'eau.

4.2 Principaux symptômes et effets, aigus et différés

Les principaux symptômes et effets connus sont décrits sur l'étiquetage (voir section 2.2) et/ou section 11

4.3 Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires Donnée non disponible

SECTION 5: Mesures de lutte contre l'incendie

5.1 Moyens d'extinction

Moyens d'extinction appropriés

Pulvériser de l'eau ou utiliser de la mousse résistant à l'alcool, de la poudre sèche ou du dioxyde de carbone.

- 5.2 Dangers particuliers résultant de la substance ou du mélange Oxydes de soufre, Oxyde de calcium
- 5.3 Conseils aux pompiers
- Porter un appareil de protection respiratoire autonome pour la lutte contre l'incendie, si nécessaire.
- 5.4 Information supplémentaire Donnée non disponible

SECTION 6: Mesures à prendre en cas de déversement accidentel

- 6.1 Précautions individuelles, équipement de protection et procédures d'urgence Éviter la formation de poussière. Éviter de respirer les vapeurs, les brouillards de pulvérisation ou les gaz. Équipement de protection individuel, voir section 8.
 - Equipement de protection individuel, voir section o.
- 6.2 Précautions pour la protection de l'environnement Pas de précautions spéciales pour l'environnement requises.
- 6.3 Méthodes et matériel de confinement et de nettoyage Balayer et enlever à la pelle. Conserver dans des récipients adaptés et fermés pour l'élimination.
- 6.4 Référence à d'autres sections Pour l'élimination, voir section 13.

SECTION 7: Manipulation et stockage

7.1 Précautions à prendre pour une manipulation sans danger Prévoir une ventilation adéquate aux endroits où la poussière se forme. Pour les précautions, voir section 2.2

7.2 Conditions nécessaires pour assurer la sécurité du stockage, tenant compte d'éventuelles incompatibilités

Entreposer dans un endroit frais. Tenir le récipient bien fermé dans un endroit sec et bien aéré. Conserver dans un endroit sec.

Sigma-Aldrich - 255548

Page 2 de 7

Classe de stockage (Allemagne) (TRGS 510): Substances solides non combustibles

7.3 Utilisation(s) finale(s) particulière(s)

Hormis les utilisations mentionnées à la section 1.2, aucune autre utilisation spécifique n'est prévue

SECTION 8: Contrôles de l'exposition/Protection individuelle

8.1 Paramètres de contrôle

Composants avec valeurs limites d'exposition professionnelle

Composant	NoCAS	Valeur	Paramètres de	Base
Calcium sulfate	10101-41-4	VME	3 mg/m3	Valeurs limites d'exposition aux postes de travail
	Remarques	Poussières i poussières o résorbées, n poumons (ac spécifiques. fonctionnem leur attribue dosée selon inhalable. Si la VME a foetus. V. ann. 1.8.2 des connais: production d ne causent p peuvent cep respiratoire p mg/m3 pour et de 10 mg/ poussières a d'études scie valable qu'à avec des pro quelques ex calcium (crai silicium (cart titane, Oxyde (gypse). Pou encore de Vi	Inertes, VME généri pui, en l'état actuel e suscitent pas la j tion fibrosante) et Comme ces pousse ent du système res une VME de 3 mg la norme EN 481, été respectée, il n' tété respectée, il n' t	ale; On qualifie d'inertes les des connaissances, ne sont pas production de tissu fibreux dans les ne causent pas de maladies sières peuvent cependant entraver le spiratoire par irritation mécanique, on m3 pour la poussière alvéolaire, et de 10 mg/m3 pour la poussière y a pas à craindre de lésions du tes les poussières qui, en l'état actuel s résorbées, ne suscitent pas la s les poumons (action fibrosante) et récifiques. Comme ces poussières fonctionnement du système sique, on leur attribue une VME de 3 laire, dosée selon la norme EN 481, ère inhalable. Les VME pour les ont été établies par un grand nombre ur VME d'une poussière inerte n'est alle c'amiante, le quartz etc. Voici res inertes: Amidon, Carbonate de magnésium (magnésite), Carbure de se, Dioxyde d'étain, Dioxyde de ndum, corindon), Sulfate de calcium àres non inertes, on ne dispose pas ées quantitatives. Il est cependant e saurait en aucun cas être plus s inertes.

8.2 Contrôles de l'exposition

Contrôles techniques appropriés

Pratiques générales d'hygiène industrielle.

Équipement de protection individuelle

Protection des yeux/du visage

Utilisez un équipement de protection des yeux, testé et approuvé selon normes gouvernementales en vigueur, telles que NIOSH (US) or EN 166(EU).

Protection de la peau

Manipuler avec des gants. Les gants doivent être contrôlés avant l'utilisation. Utiliser une technique de retrait des gants appropriée afin d'éviter que la peau entre en contact avec le produit (i.e. sans toucher la surface extérieure du gant). Jeter les gants contaminés après l'utilisation

Sigma-Aldrich - 255548

Page 3 de 7

conformément aux lois en vigueur et aux bonnes pratiques de laboratoire. Laver et Sécher les mains.

Les gants de protection sélectionnés doivent satisfaire aux spécifications de la Directive EU 89/686/CEE et au standard EN 374 qui en dérive.

Contact total Matériel: Caoutchouc nitrile épaisseur minimum: 0,11 mm délai de rupture: 480 min Matériel testé :Dermatril® (KCL 740 / Aldrich Z677272, Taille M)

Contact par éclaboussures Matériel: Caoutchouc nitrile épaisseur minimum: 0,11 mm délai de rupture: 480 min Matériel testé :Dermatril® (KCL 740 / Aldrich Z677272, Taille M)

Source des données: KCL GmbH, D-36124 Eichenzell, Téléphone +49 (0)6659 87300, e-mail sales@kcl.de, Methode test: EN374

En cas d'utilisation en solution ou en mélange avec d'autres substances, et dans des conditions qui diffèrent de la norme EN 374, contacter le fournisseur des gants homologués CE. Cette recommandation est purement consultative et doit être évaluée par un responsable hygiène et sécurité, familiarisé avec la situation spécifique de l'utilisation prévue par nos clients. Ceci ne doit pas être interprété comme une approbation dans un quelconque scenario d'utilisation.

Protection du corps

Choisir une protection corporelle en relation avec le type, la concentration et les quantités de substances dangereuses, et les spécificités du poste de travail., Le type d'équipement de protection doit être sélectionné en fonction de la concentration et de la quantité de la substance dangereuse au lieu de travail.

Protection respiratoire

La protection des voies respiratoires n'est pas requise. Utiliser des masque de protection type N95 (US) ou de type P1 (EN 143) pour se protéger des niveaux de poussières Utiliser du matériel testé et approuvé par des normes telles que NIOSH (US) ou CEN (EU).

Contrôle de l'exposition de l'environnement

Pas de précautions spéciales pour l'environnement requises.

SECTION 9: Propriétés physiques et chimiques

9.1 Informations sur les propriétés physiques et chimiques essentielles

a)	Aspect	Forme: poudre Couleur: blanc
b)	Odeur	Donnée non disponible
c)	Seuil olfactif	Donnée non disponible
d)	рН	Donnée non disponible
e)	Point de fusion/point de congélation	Donnée non disponible
f)	Point initial d'ébullition et intervalle d'ébullition	Donnée non disponible
g)	Point d'éclair	Non applicable
h)	Taux d'évaporation	Donnée non disponible
i)	Inflammabilité (solide, gaz)	Donnée non disponible
j)	Limites	Donnée non disponible

supérieure/inférieure d'inflammabilité ou

Sigma-Aldrich - 255548

Page 4 de 7

d'explosivité

k)	Pression de vapeur	Donnée non disponible
I)	Densité de vapeur	Donnée non disponible
m)	Densité relative	2,320 g/cm3
n)	Hydrosolubilité	Donnée non disponible
o)	Coefficient de partage: n-octanol/eau	Donnée non disponible
p)	Température d'auto- inflammabilité	Donnée non disponible
q)	Température de décomposition	Donnée non disponible
r)	Viscosité	Donnée non disponible
s)	Propriétés explosives	Donnée non disponible
t)	Propriétés comburantes	Donnée non disponible

- 9.2 Autres informations concernant la sécurité
 - Donnée non disponible

SECTION 10: Stabilité et réactivité

10.1 Réactivité

- Donnée non disponible
- 10.2 Stabilité chimique Stable dans les conditions recommandées de stockage.
- **10.3 Possibilité de réactions dangereuses** Donnée non disponible
- 10.4 Conditions à éviter Éviter l'humidité.
- 10.5 Matières incompatibles Oxydants forts
- 10.6 Produits de décomposition dangereux Autres produits de décomposition - Donnée non disponible En cas d'incendie : voir section 5

SECTION 11: Informations toxicologiques

11.1 Informations sur les effets toxicologiques

Toxicité aiguë Donnée non disponible

Corrosion cutanée/irritation cutanée Donnée non disponible

Lésions oculaires graves/irritation oculaire Donnée non disponible

Sensibilisation respiratoire ou cutanée Donnée non disponible

Mutagénicité sur les cellules germinales Donnée non disponible

Cancérogénicité

IARC: Aucun composant de ce produit présent à des concentrations plus grandes que ou égales à 0,1% n'a été identifié comme cancérigène probable, possible ou reconnu pour l'homme par

Sigma-Aldrich - 255548 Page 5 de 7

IARC.

Toxicité pour la reproduction

Donnée non disponible

Toxicité spécifique pour certains organes cibles - exposition unique Donnée non disponible

Toxicité spécifique pour certains organes cibles - exposition répétée Donnée non disponible

Danger par aspiration Donnée non disponible

Information supplémentaire RTECS: EW4150000

A notre connaissance, les propriétés chimiques, physiques et toxicologiques n'ont pas été complètement étudiées.

SECTION 12: Informations écologiques

12.1 Toxicité

- Donnée non disponible
- **12.2** Persistance et dégradabilité Donnée non disponible
- 12.3 Potentiel de bioaccumulation Donnée non disponible
- 12.4 Mobilité dans le sol Donnée non disponible

12.5 Résultats des évaluations PBT et vPvB

L'évaluation du caractère PBT / vPvB n'est pas disponible car l'évaluation de la sécurité chimique n'est pas requise / n'est pas menée

12.6 Autres effets néfastes

Donnée non disponible

SECTION 13: Considérations relatives à l'élimination

13.1 Méthodes de traitement des déchets

Produit Remettre les excédents et les solutions non recyclables à une entreprise d'élimination des déchets agréée.

Emballages contaminés Eliminer comme produit non utilisé.

SECTION 14: Informations relatives au transport

14.1	Numéro Ol ADR/RID:	NU -	IMDG: -	IATA: -	
14.2	Nom d'exp ADR/RID: IMDG: IATA:	édition des Nations un Marchandise non dange Not dangerous goods Not dangerous goods	i es ereuse		
14.3 Classe(s) de danger pour le transport					
	ADR/RID:	-	IMDG: -	IATA: -	
14.4	Groupe d'e ADR/RID:	emballage -	IMDG: -	IATA: -	
Sigma-	Aldrich - 255548	3		Pa	qe6 de7

14.5 Dangers pour l'environnement

ADR/RID: non IMDG Marine pollutant: no IATA: no

14.6 Précautions particulières à prendre par l'utilisateur Donnée non disponible

SECTION 15: Informations réglementaires

Cette fiche de données de sécurité est conforme aux exigences du Règlement (CE) No. 1907/2006

15.1 Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de

santé et d'environnement

Donnée non disponible

15.2 Évaluation de la sécurité chimique Pour ce produit, aucune évaluation de la sécurité chimique n'a été réalisée

SECTION 16: Autres informations

Information supplémentaire

Copyright 2015 Sigma-Aldrich Co. LLC. Copies en papier autorisées pour usage interne uniquement. Les informations ci-dessus ont été préparées sur la base des renseignements disponibles les plus sûrs. Elles ne prétendent pas être exhaustives et devront être considerées comme un guide. Le groupe Sigma-Aldrich, ne pourra être tenu responsable des dommages résultant de l'utilisation ou de tout contact avec le produit sus-mentionné. Voir verso de la facture ou du bulletin de livraison pour nos termes et conditions de vente.

Sigma-Aldrich - 255548

Page 7 de 7

SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street,Saint Louis,MO 63103,USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Specification

Product Name: Potassium carbonate – BioXtra, ≥99.0%

 Product Number:
 P5833

 CAS Number:
 584-08-7

 MDL:
 MFCD00011382

 Formula:
 CK2O3

 Formula Weight:
 138.21 g/mol

TEST	Specification
Appearance (Color)	White
Appearance (Form)	Pow der Colorlass
Solubility (Turbidity)	Clear
Insoluble matter	< 0.1 %
Chloride Content	< 0.005 %
Aluminum (AI)	< 0.0005 %
Phosphorus (P)	- < 0.0005 %
Lead (Pb)	- < 0.001 %
Iron (Fe)	< 0.0005 %
Copper (Cu)	< 0.0005 %
Zinc (Zn)	< 0.0005 %
Calcium (Ca)	< 0.001 %
Magnesium (Mg)	< 0.0005 %
Sodium (Na)	< 0.5 %
Ammonia (NH4)	< 0.05 %
Recommended Retest Period 3 years	
Purity by Titration	<u>></u> 99.0 %
Sulfate (SO4)	<u><</u> 0.02 %

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

1 of 2

SIGMA-ALDRICH°

sigma-aldrich.com

3050 Spruce Street,Saint Louis,MO 63103,USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Specification

Product Name: Potassium carbonate – BioXtra, ≥99.0%

Product Number: CAS Number: MDL: Formula: Formula Weight: P5833 584-08-7 MFCD00011382 CK2O3 138.21 g/mol

Specification

 K_2CO_3

TEST

Specification Date : 04/08/2011

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

2 of 2

SIGMA-ALDRICH

sigma-aldrich.com FICHE DE DONNÉES DE SÉCURITÉ

conformément au Règlement (CE) No. 1907/2006 Version 5.1 Date de révision 13.06.2014 Date d'impression 30.06.2015

SECT	ION 1: Identification de la s	ubs	stance/du mélange et de la société/l'entreprise		
1.1	Identificateurs de produit Nom du produit	:	Carbonate de potassium		
	Code Produit Marque No REACH NoCAS	:::::::::::::::::::::::::::::::::::::::	367877 Aldrich Pas de numéro d'enregistrement disponible pour cette substance car cette substance ou ses usages sont exempts d'enregistrement, le tonnage annuel ne nécessite pas d'enregistrement ou bien l'enregistrement est prévu pour une date ultérieure 584-08-7		
1.2	Utilisations identifiées per	tine	entes de la substance ou du mélange et utilisations déconseillées		
	Utilisations identifiées	:	Substances chimiques de laboratoire, Fabrication de substances		
1.3	Renseignements concerna	ant	le fournisseur de la fiche de données de sécurité		
	Société	:	Sigma-Aldrich Chemie GmbH Industriestrasse 25 CH-9471 BUCHS		
	Téléphone Fax Adresse e-mail	::	+41 81-755-2511 +41 81-756-5449 eurtechserv@sial.com		
1.4	Numéro d'appel d'urgence				
	Numéro d'Appel d'Urgence	:	+41 81-755-2255 145(CH) +41 44-251-5151 (Tox-Zentrum)		
SECT	ION 2: Identification des da	nge	ers		
2.1	Classification de la substa	nce	e ou du mélange		
	Classification en accord avec la réglementation (EC) No 1272/2008 Toxicité aiguë, Oral(e) (Catégorie 4), H302 Irritation cutanée (Catégorie 2), H315 Irritation oculaire (Catégorie 2), H319 Toxicité spécifique pour certains organes cibles - exposition unique (Catégorie 3), H335				
	Pour le texte complet des Phrases-H mentionnées dans ce chapitre, voir section 16.				
	Classification conformément aux Directives UE 67/548/CEE ou 1999/45/CE				

Nocif R22, R36/37/38

Pour le texte complet des Phrases-R mentionnées dans ce chapitre, voir section 16.

2.2 Éléments d'étiquetage

Etiquetage en accord avec la réglementation (EC) No 1272/2008
Pictogramme

Mention d'avertissement

Attention

Mention de danger

H302 Aldrich - 367877

Xn

Nocif en cas d'ingestion.

Page 1 de 7

H315	Provoque une irritation cutanée.
H319	Provoque une sévère irritation des yeux.
H335	Peut irriter les voies respiratoires.
Conseils de prudence P261 P305 + P351 + P338	Éviter de respirer les poussières. EN CAS DE CONTACT AVEC LES YEUX: rincer avec précaution à l'eau pendant plusieurs minutes. Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer.

Informations Additionnelles sur aucun(e) les Dangers

2.3 Autres dangers - aucun(e)

SECTION 3: Composition/informations sur les composants

3.1 Substances

Formule	:	СК ₂ О3
Poids moléculaire	:	138,21 g/mol
NoCAS	:	584-08-7
NoCE	:	209-529-3

Composants dangereux selon Réglement (EC) No 1272/2008

Composant		Classification	Concentration
Potassium carbonate			
NoCAS	584-08-7	Acute Tox. 4; Skin Irrit. 2; Eye	<= 100 %
NoCE	209-529-3	Irrit. 2; STOT SE 3; H302,	
		H315 H319 H335	

Composants dangereux selon Directive 1999/45/EC

Composant		Classification	Concentration
Potassium carbonate	9		
NoCAS	584-08-7	Xn, R22 - R36/37/38	<= 100 %
NoCE	209-529-3		

Pour le texte complet des mentions de danger-H et des phrases-R mentionnées dans cet article, voir chapitre 16

SECTION 4: Premiers secours

4.1 Description des premiers secours

Conseils généraux

Consulter un médecin. Montrer cette fiche de données de sécurité au médecin traitant.

En cas d'inhalation

En cas d'inhalation, transporter la personne hors de la zone contaminée. En cas d'arrêt respiratoire, pratiquer la respiration artificielle. Consulter un médecin.

En cas de contact avec la peau

Laver au savon avec une grande quantité d'eau. Consulter un médecin.

En cas de contact avec les yeux

Bien rincer avec beaucoup d'eau pendant au moins 15 minutes et consulter un médecin.

En cas d'ingestion

Ne jamais rien faire avaler à une personne inconsciente. Se rincer la bouche à l'eau. Consulter un médecin.

4.2 Principaux symptômes et effets, aigus et différés

Les principaux symptômes et effets connus sont décrits sur l'étiquetage (voir section 2.2) et/ou section 11

Aldrich - 367877

Page 2 de 7

4.3 Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires donnée non disponible

SECTION 5: Mesures de lutte contre l'incendie

- 5.1 Moyens d'extinction
 Moyens d'extinction appropriés
 Utiliser des moyens d'extinction appropriés aux conditions locales et à l'environnement voisin.
- 5.2 Dangers particuliers résultant de la substance ou du mélange Oxydes de carbone, oxydes de potassium
- 5.3 Conseils aux pompiers
 - Porter un appareil de protection respiratoire autonome pour la lutte contre l'incendie, si nécessaire.
- 5.4 Information supplémentaire Le produit lui-même ne brûle pas.

SECTION 6: Mesures à prendre en cas de dispersion accidentelle

- 6.1 Précautions individuelles, équipement de protection et procédures d'urgence Utiliser un équipement de protection individuelle. Éviter la formation de poussière. Éviter de respirer les vapeurs, les brouillards de pulvérisation ou les gaz. Assurer une ventilation adéquate. Évacuer le personnel vers des endroits sûrs. Éviter l'inhalation de la poussière. Équipement de protection individuel, voir section 8.
- 6.2 Précautions pour la protection de l'environnement Empêcher le produit de pénétrer dans les égouts.
- 6.3 Méthodes et matériel de confinement et de nettoyage Ramasser et évacuer sans créer de poussière. Balayer et enlever à la pelle. Conserver dans des récipients adaptés et fermés pour l'élimination.

6.4 Référence à d'autres sections

Pour l'élimination, voir section 13.

SECTION 7: Manipulation et stockage

- 7.1 Précautions à prendre pour une manipulation sans danger Éviter le contact avec la peau et les yeux. Éviter la formation de poussières et d'aérosols. Prévoir une ventilation adéquate aux endroits où la poussière se forme. Pour les précautions, voir section 2.2
- 7.2 Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités Entreposer dans un endroit frais. Tenir le récipient bien fermé dans un endroit sec et bien aéré.

7.3 Utilisation(s) finale(s) particulière(s)

Hormis les utilisations mentionnées à la section 1.2, aucune autre utilisation spécifique n'est prévue

SECTION 8: Contrôles de l'exposition/protection individuelle

8.1 Paramètres de contrôle

Composants avec valeurs limites d'exposition professionnelle

Ne contient pas de substances avec des valeurs limites d'exposition professionnelle.

8.2 Contrôles de l'exposition

Contrôles techniques appropriés

À manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité. Se laver les mains avant les pauses et à la fin de la journée de travail.

Aldrich - 367877

Page 3 de 7

Équipement de protection individuelle

Protection des yeux/du visage

Lunettes de sécurité avec protections latérales conforme à l'EN166Utilisez un équipement de protection des yeux, testé et approuvé selon normes gouvernementales en vigueur, telles que NIOSH (US) or EN 166(EU).

Protection de la peau

Manipuler avec des gants. Les gants doivent être contrôlés avant l'utilisation. Utiliser une technique de retrait des gants appropriée afin d'éviter que la peau entre en contact avec le produit (i.e. sans toucher la surface extérieure du gant). Jeter les gants contaminés après l'utilisation conformément aux lois en vigueur et aux bonnes pratiques de laboratoire. Laver et Sécher les mains.

Les gants de protection sélectionnés doivent satisfaire aux spécifications de la Directive EU 89/686/CEE et au standard EN 374 qui en dérive.

Contact total Matériel: Caoutchouc nitrile épaisseur minimum: 0,11 mm Temps de pénétration: 480 min Matériel testé :Dermatril® (KCL 740 / Aldrich Z677272, Taille M)

Contact par éclaboussures Matériel: Caoutchouc nitrile épaisseur minimum: 0,11 mm Temps de pénétration: 480 min Matériel testé :Dermatril® (KCL 740 / Aldrich Z677272, Taille M)

Source des données: KCL GmbH, D-36124 Eichenzell, Téléphone +49 (0)6659 87300, e-mail sales@kcl.de, Methode test: EN374

En cas d'utilisation en solution ou en mélange avec d'autres substances, et dans des conditions qui diffèrent de la norme EN 374, contacter le fournisseur des gants homologués CE. Cette recommandation est purement consultative et doit être évaluée par un responsable hygiène et sécurité, familiarisé avec la situation spécifique de l'utilisation prévue par nos clients. Ceci ne doit pas être interprété comme une approbation dans un quelconque scenario d'utilisation.

Protection du corps

Combinaison complète de protection contre les produits chimiques, Le type d'équipement de protection doit être sélectionné en fonction de la concentration et de la quantité de la substance dangereuse au lieu de travail.

Protection respiratoire

En cas de nuisances d'exposition, utilisez un respirateur avec filtre à particules de type P95 (US) ou de type P1 (EU EN 143). Pour un niveau de protection plus élevé, utilisez des cartouches respiratoires de type OV/AG/P99 (US) ou de type ABEK-P2 (EU EN 143).

Utiliser du matériel testé et approuvé par des normes telles que NIOSH (US) ou CEN (EU).

Contrôle de l'exposition de l'environnement Empêcher le produit de pénétrer dans les égouts.

SECTION 9: Propriétés physiques et chimiques

9.1 Informations sur les propriétés physiques et chimiques essentielles

- a) Aspect Forme: Poudre avec des morceaux Couleur: blanc
 - b) Odeur donnée non disponible
- c) Seuil olfactif donnée non disponible
- d) pH 11,0 13 à 138 g/l à 25 °C
- e) Point de fusion/point de Point/intervalle de fusion: 891 °C

Aldrich - 367877

Page 4 de 7

congélation

f)	Point initial d'ébullition et intervalle d'ébullition	donnée non disponible
g)	Point d'éclair	donnée non disponible
h)	Taux d'évaporation	donnée non disponible
i)	Inflammabilité (solide, gaz)	donnée non disponible
j)	Limites supérieure/inférieure d'inflammabilité ou d'explosivité	donnée non disponible
k)	Pression de vapeur	donnée non disponible
I)	Densité de vapeur	donnée non disponible
m)	Densité relative	donnée non disponible
n)	Hydrosolubilité	138 g/l à 20 °C - complètement soluble
o)	Coefficient de partage: n-octanol/eau	donnée non disponible
p)	Température d'auto- inflammabilité	donnée non disponible
q)	Température de décomposition	donnée non disponible
r)	Viscosité	donnée non disponible
s)	Propriétés explosives	donnée non disponible
t)	Propriétés comburantes	donnée non disponible

9.2 Autres informations concernant la sécurité donnée non disponible

SECTION 10: Stabilité et réactivité

10.1 Réactivité

- donnée non disponible 10.2 Stabilité chimique
 - Stable dans les conditions recommandées de stockage.
- **10.3** Possibilité de réactions dangereuses donnée non disponible
- **10.4 Conditions à éviter** Exposition à l'humidité.
- **10.5** Matières incompatibles Acides, Oxydants forts
- **10.6 Produits de décomposition dangereux** Autres produits de décomposition - donnée non disponible En cas d'incendie : voir section 5

SECTION 11: Informations toxicologiques

11.1 Informations sur les effets toxicologiques

Toxicité aiguë DL50 Oral(e) - rat - 1.870 mg/kg Inhalation: donnée non disponible

Aldrich - 367877

Page 5 de 7

Corrosion cutanée/irritation cutanée donnée non disponible

Lésions oculaires graves/irritation oculaire donnée non disponible

Sensibilisation respiratoire ou cutanée donnée non disponible

Mutagénicité sur les cellules germinales

rat

synthèse de l'ADN non-inventoriée

Cancérogénicité

IARC: Aucun composant de ce produit présent à des concentrations plus grandes que ou égales à 0,1% n'a été identifié comme cancérigène probable, possible ou reconnu pour l'homme par IARC.

Toxicité pour la reproduction donnée non disponible

Toxicité spécifique pour certains organes cibles - exposition unique Inhalation - Peut irriter les voies respiratoires.

Toxicité spécifique pour certains organes cibles - exposition répétée donnée non disponible

Danger par aspiration

donnée non disponible

Information supplémentaire RTECS: TS7750000

A notre connaissance, les propriétés chimiques, physiques et toxicologiques n'ont pas été complètement étudiées.

SECTION 12: Informations écologiques

12.1 Toxicité

Toxicité pour le poisson CL50 - Pimephales promelas (Vairon à grosse tête) - < 510 mg/l - 96 h

- 12.2 Persistance et dégradabilité donnée non disponible
- 12.3 Potentiel de bioaccumulation donnée non disponible
- 12.4 Mobilité dans le sol donnée non disponible
- 12.5 Résultats des évaluations PBT et VPVB

L'évaluation du caractère PBT / vPvB n'est pas disponible car l'évaluation de la sécurité chimique n'est pas requise / n'est pas menée

12.6 Autres effets néfastes

donnée non disponible

SECTION 13: Considérations relatives à l'élimination

13.1 Méthodes de traitement des déchets

Produit

Remettre les excédents et les solutions non recyclables à une entreprise d'élimination des déchets agréée. Se mettre en rapport avec une entreprise spécialisée dans l'élimination de déchets pour procéder à l'élimination de ce produit.

Aldrich - 367877

Page 6 de 7

Emballages contaminés

Eliminer comme produit non utilisé.

SECT	SECTION 14: Informations relatives au transport				
14.1	Numéro ONU ADR/RID: -	IMDG: -	IATA: -		
14.2	Nom d'expédition des Nations un ADR/RID:Marchandise non dang IMDG:IMDG:Not dangerous goods Not dangerous goods	n ies Jereuse			
14.3	Classe(s) de danger pour le trans ADR/RID: -	sport IMDG: -	IATA: -		
14.4	Groupe d'emballage ADR/RID: -	IMDG: -	IATA: -		
14.5	Dangers pour l'environnement ADR/RID: non	IMDG Marine pollutant: no	IATA: no		
14.6	Précautions particulières à prene donnée non disponible	dre par l'utilisateur			

SECTION 15: Informations réglementaires

Cette fiche de données de sécurité est conforme aux exigences du Règlement (CE) No. 1907/2006

15.1 Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de

santé et d'environnement

donnée non disponible

15.2 Évaluation de la sécurité chimique

Pour ce produit, aucune évaluation de la sécurité chimique n'a été réalisée

SECTION 16: Autres informations

Texte complet des Phrases-H citées dans les sections 2 et 3.

Acute Tox.	Toxicité aiguë
Eye Irrit.	Irritation oculaire
H302	Nocif en cas d'ingestion.
H315	Provoque une irritation cutanée.
H319	Provoque une sévère irritation des yeux.
H335	Peut irriter les voies respiratoires.
Skin Irrit	Irritation cutanée
Skin Irrit.	Irritation cutanée

Texte intégral des phrases R mentionnées sous les Chapitres 2 et 3

Xn	Nocif
R22	Nocif en cas d'ingestion.
R36/37/38	Irritant pour les yeux, les voies respiratoires et la peau.

Information supplémentaire

Copyright 2014 Sigma-Aldrich Co. LLC. Copies en papier autorisées pour usage interne uniquement. Les informations ci-dessus ont été préparées sur la base des renseignements disponibles les plus sûrs. Elles ne prétendent pas être exhaustives et devront être considerées comme un guide. Le groupe Sigma-Aldrich, ne pourra être tenu responsable des dommages résultant de l'utilisation ou de tout contact avec le produit sus-mentionné. Voir verso de la facture ou du bulletin de livraison pour nos termes et conditions de vente.

Aldrich - 367877

Page 7 de 7

Nº CAS	Numéro CE	Formule de Hill	Formule chimique	Masse molaire	Grade
7631-99-4	231-554-3	NNaO ₃	NaNO ₃	84.99 g/mol	FCC,E 251

NaCl	- Fiche	technique
------	---------	-----------

Description	
Référence	106404
Informations proc	duit
Numéro CAS	7647-14-5
Numéro CE	231-598-3
Grade	ACS,ISO,Reag. Ph Eur
Formule de Hill	CINa
Formule chimique	NaCl
Molar Mass	58.44 g/mol
Code SH	2501 00 99
Informations physical	sico-chimiques
Point d'ébullition	1461 °C (1013 hPa)
Densité	2.17 g/cm ³ (20 °C)
Point de fusion	801 °C
Valeur de pH	4.5 - 7.0 (100 g/l, H ₂ O, 20 °C)
Pression de vapeur	1.3 hPa (865 °C)
Densité	1140 kg/m ³
Solubilité	358 g/l (20 °C)
Informations toxi	cologiques
DL 50 orale	DL50 Rat 3000 mg/kg
DL 50 cutanée	DL50 Lapin > 10000 mg/kg

Informations de sécurité selon le SGH			
RTECS	VZ4725000		
Classe de stockage	10 - 13 Autres liquides ou matière	s solides	
WGK	WGK 1 pollue faiblement l'eau		
Élimination	14 Sels inorganiques: catégorie I. So verser le produit, contrôler le pH a	lutions neutres de ces sels: catégorie D. Avant de vec l'indicateur universel en bandelettes (art. 109535).	
Informations sur	le transport		
Déclaration RID 8	ADR (rail et route)	Kein Gefahrgut	
Déclaration IATA	DGR (transport aérien)	No Dangerous Good	
Déclaration Code	IMDG (transport maritime)	No Dangerous Good	
Caractéristiques			
Caractéristiques			
Assay (argentom	etric)	≥ 99.5 %	
Assay (argentometric; calculated on dried substance)		99.0 - 100.5 %	
Identity		passes test	
Appearance of solution		passes test	
Acidity or alkalinity		passes test	
pH-value (5 %; w	ater)	5.0 - 8.0	
Insoluble matter		≤ 0.005 %	
Bromide (Br)		≤ 0.005 %	
Chlorate and Nitrate (as NO ₃)		≤ 0.003 %	
Hexacyanoferrate II		≤ 0.0001 %	
Ferrocyanides		passes test	
lodide (I)		≤ 0.001 %	
		passes test	
Nitrite (NO ₂)		passes test	

Caractéristiques	
Phosphate (PO ₄)	≤ 0.0005 %
Sulphate (SO ₄)	≤ 0.001 %
Total nitrogen (N)	≤ 0.0005 %
Heavy metals (as Pb)	≤ 0.0005 %
As (Arsenic)	≤ 0.00004 %
Ba (Barium)	passes test
	≤ 0.001 %
Ca (Calcium)	≤ 0.002 %
Cu (Copper)	≤ 0.0002 %
Fe (Iron)	≤ 0.0001 %
K (Potassium)	≤ 0.005 %
Mg (Magnesium)	≤ 0.001 %
Calcium, Magnesium and R_2O_3 -precipitate	≤ 0.005 %
Magnesium and alkaline-earth metals (as Ca)	≤ 0.0100 %
Loss on drying (105 °C, 2 h)	≤ 0.5 %
Corresponds to ACS,ISO,Reag. Ph Eur	

Date de révision 11.03.2015 Version 4.8 SECTION 1. Identification de la substance/du mélange et de la société/l'entreprise 1.1 Identificateur de produit Code produit 106404 Nom du produit Chlorure de sodium pour analyse EMSURE® ACS, ISO, Reag. Ph Eur Numéro d'Enregistrement Aucun numéro d'enregistrement disponible pour cette substance car la REACH sub stance ou son utilisation sont dispensées d'enregistrement selon l'artic le 2 de la réglementation REACH (EC) N° 1907/2006, le tonnage annuel ne nécessite aucun enregistrement ou l'enregistrement est prévu pour un dél ai ultérieur. No.-CAS 7647-14-5 1.2 Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées Utilisations identifiées Réactif pour analyses Pour de plus amples informations sur les utilisations, veuillez consulter le site Merck Chemicals (www.merckgroup.com).

1.3 Renseignements concernant le fournisseur de la fiche de données de sécurité

Société Service responsable	Merck KGaA * 64271 Darmstadt * Allemagne * Tél. +49 6151 72-0 EQ-RS * e-mail: prodsafe@merckgroup.com
Représentation régionale	Merck & Cie.
	CH-8200 Schaffhausen
	Tel.: +41 (0)52 630 72 72
	Fax.: +41 (0)52 630 72 55 information@merckgroup.com
) <u> </u>
1.4 Numéro d'appel d'urgence	145 (Tox Info Suisse)

SECTION 2. Identification des dangers

2.1 Classification de la substance ou du mélange

Cette substance n'est pas classée comme dangereuse selon la législation de l'Union Européenne.

2.2 Éléments d'étiquetage

Étiquetage (RÈGLEMENT (CE) No 1272/2008)

N'est pas une substance ni un mélange dangereux conformément au règlement (CE) No. 1272/2008.

2.3 Autres dangers

Aucun(e) à notre connaissance.

SECTION 3. Composition/informations sur les composants

3.1 Substance

Formule	NaCl	CINa (Hill)
NoCE	231-598-3	· · ·
Μ	58,44 g/mol	

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 1 de 9

Code produit	106404
Nom du produit	Chlorure de sodium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

Remarques

Aucun composant dangereux selon le Règlement (CE) No. 1907/2006

3.2 Mélange

Non applicable

SECTION 4. Premiers secours

4.1 Description des premiers secours

En cas d'inhalation: faire respirer de l'air frais.

En cas de contact avec la peau: Enlever immédiatement tous les vêtements contaminés. Rincer la peau à l'eau/ se doucher.

En cas de contact avec les yeux : rincer abondamment à l'eau.

En cas d'ingestion: Faire boire de l'eau (maximal 2 verres), en cas de malaise, consulter un médecin

- 4.2 Principaux symptômes et effets, aigus et différés Nausée, Vomissements
- 4.3 Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires Pas d'information disponible.

SECTION 5. Mesures de lutte contre l'incendie

5.1 Moyens d'extinction

Moyens d'extinction appropriés Utiliser des moyens d'extinction appropriés aux conditions locales et à l'environnement proche.

Moyens d'extinction inappropriés Aucune limitation concernant les agents d'extinction pour cette substanc e/ce mélange.

5.2 Dangers particuliers résultant de la substance ou du mélange

Non combustible. Possibilité d'émanation de vapeurs dangereuses en cas d'incendie à proximité. En cas d'incendie, il peut se produire un dégagement de (d'): Chlorure d'hydrogène gazeux

5.3 Conseils aux pompiers

Équipement de protection spécial pour les pompiers Présence dans la zone de danger uniquement avec un appareil respiratoire autonome. Pour eviter le contact avec la peau respecter une distance de sécurité et porter des vêtemenents de protection appropriés.

Information supplémentaire

Rabattre les gaz/les vapeurs/le brouillard à l'aide d'eau pulvérisée. Empêcher les eaux d'extinction du feu de contaminer les eaux de surface ou le réseau d'alimentation souterrain.

SECTION Mesures à prendre en cas de déversement accidentelle

6.1 Précautions individuelles, équipement de protection et procédures d'urgence Conseil pour les non-secouristes: Eviter l'inhalation des poussières. Evacuer la zone

dangereuse, respecter les procédures d'urgence, consulte r un spécialiste.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 2 de 9

 Code produit
 106404

 Nom du produit
 Chlorure de sodium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

Conseil pour les secouristes:

Equipement de protection, voir section 8.

6.2 Précautions pour la protection de l'environnement Empêcher le produit de pénétrer dans les égouts.

6.3 Méthodes et matériel de confinement et de nettoyage

Recouvrir les drains. Collecter, lier et pomper les produits répandus. Respecter les éventuelles restrictions concernant les matériaux (voir se ctions 7 et 10). Récupérer à l'état sec. Acheminer vers l'élimination. Nettoyer. Eviter la formation de poussière.

6.4 Référence à d'autres sections

Indications concernant le traitement des déchets, voir section 13.

SECTION 7. Manipulation et stockage

7.1 Précautions à prendre pour une manipulation sans danger

Conseils pour une manipulation sans danger Respecter les mises-en-garde de l'étiquette.

Mesures d'hygiène

Enlever tout vêtement souillé. Se laver les mains après le travail.

7.2 Conditions nécessaires pour assurer la sécurité du stockage, tenant compte d'éventuelles incompatibilités Conditions de stockage

Bien fermé. A l'abri de l'humidité.

Température de stockage recommandée voir sur l'étiquette du produit.

7.3 Utilisation(s) finale(s) particulière(s)

Aucune utilisation spécifique prévue à l'exception de celles mentionnées à la section 1.2.

SECTION 8. Contrôles de l'exposition/protection individuelle

8.1 Paramètres de contrôle

Ne contient pas de substances avec des valeurs limites d'exposition professionnelle.

8.2 Contrôles de l'exposition

Mesures d'ordre technique

Privilégier les mesures techniques et les opérations appropriées par rap port à l'utilisation d'un équipement de protection personnelle. Voir section 7.1.

Mesures de protection individuelle

Choisir les moyens de protection individuelle en raison de la concentration et de la quantité des substances dangereuses et du lieu de travail. S'informer auprès du fournisseur sur la résistance chimique des moyens de protection.

Protection des yeux/du visage

Lunettes de sécurité

Protection des mains contact total:

Matière des gants: Caoutchouc nitrile Épaisseur du gant: 0,11 mm

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 3 de 9

Code produit Nom du produit	106404 Chlorure de so	dium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur
délai de ru	pture:	> 480 min
contact par éclaboussures:		

Épaisseur du gant: 0,11 mm délai de rupture: > 480 min

Les gants de protection utilisés doivent répondre aux spécifications de la directive CE 89/686/CEE et de la norme correspondante EN374, par exemple KCL 741 Dermatril® L (contact total), KCL 741 Dermatril® L (contact par éclaboussures).

Les temps de rupture mentionnés ont été obtenus par la société KCL lors de mesures en laboratoire selon la norme EN 374 sur des échantillons de matériaux pour les types de gants conseillés .

Cette recommandation concerne uniquement le produit repris dans la fiche de données de sécurité que nous fournissons et uniquement pour l'utilisation indiquée. En cas de solution ou de mélange avec d'autres substances et/ou de conditions différentes de celles de la norme EN 374, contactez le fournisseur de gants agréé CE, (par exemple : KCL GmbH, D-36124 Eichenzell, Internet : www.kcl.de).

Protection respiratoire

nécessaire en cas de formation de poussières.

Type de Filtre recommandé: Filtre P 1

L'entrepreneur doit s'assurer que la maintenance, le nettoyage et le contrôle des dispositifs de protection respiratoire sont exécutés conformément aux instructions du fabricant. Ces mesures doivent être correctement documentées.

Contrôles d'exposition liés à la protection de l'environnement

Empêcher le produit de pénétrer dans les égouts.

SECTION 9. Propriétés physiques et chimiques

9.1 Informations sur les propriétés physiques et chimiques essentielles

Forme	solide
Couleur	incolore
Odeur	inodore
Seuil olfactif	Non applicable
рН	4,5 - 7,0 à 100 g/l 20 °C
Point de fusion	801 °C
Point/intervalle d'ébullition	1.461 °C à 1.013 hPa
Point d'éclair	Non applicable
Taux d'évaporation	Pas d'information disponible.
Inflammabilité (solide, gaz)	Ce produit n'est pas inflammable.
Limite d'explosivité, inférieure	Pas d'information disponible.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 4 de 9
Code produit	
Nom du produit	Chlorure de sodium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur
Limite d'explosivité, supérieur	e Pas d'information disponible.
Pression de vapeur	1,3 hPa à 865 °C
Densité de vapeur relative	Pas d'information disponible.
Densité	2,17 g/cm³ à 20 °C
Densité relative	Pas d'information disponible.
Hydrosolubilité	358 g/l à 20 °C
Coefficient de partage: n- octanol/eau	Pas d'information disponible.
Température d'auto- inflammabilité	Pas d'information disponible.
Température de décompositio	n Pas d'information disponible.
Viscosité, dynamique	Pas d'information disponible.
Propriétés explosives	Non classé parmi les explosifs.
Propriétés comburantes	non
9.2 Autres données	
Température d'inflammation	Non applicable
Masse volumique apparente	env.1.140 kg/m ³

SECTION 10. Stabilité et réactivité

10.1 Réactivité Voir ci-dessous

10.2 Stabilité chimique

La production est chimiquement stable dans conditions ambiantes standard (température ambiante).

10.3 Possibilité de réactions dangereuses

Danger d'explosion/eéactions exothermiques avec : Métaux alcalins Réactions exothermiques avec : Lithium

10.4 Conditions à éviter

aucune information disponible

10.5 Matières incompatibles

aucune information disponible

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 5 de 9

 Code produit
 106404

 Nom du produit
 Chlorure de sodium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

10.6 Produits de décomposition dangereux

en cas d'incendie: voir paragraphe 5.

SECTION 11. Informations toxicologiques

11.1 Informations sur les effets toxicologiques

Toxicité aiguë par voie orale DL50 Rat: 3.000 mg/kg (RTECS)

Toxicité aiguë par inhalation Ces informations ne sont pas disponibles. *Toxicité aiguë par voie cutanée* DL50 Lapin: > 10.000 mg/kg (RTECS) *Irritation de la peau*

Lapin (ECHA) Pas d'irritation de la peau

Irritation des yeux

Lapin (ECHA) Pas d'irritation des yeux

Sensibilisation

Ces informations ne sont pas disponibles.

Mutagénicité sur les cellules germinales Génotoxicité in vitro Action mutagène bactérienne (test de cellules de mammifères): test micronucléus. Résultat: négatif (IUCLID) Test de Ames Résultat: négatif (IUCLID) Cancérogénicité

Ces informations ne sont pas disponibles.

Toxicité pour la reproduction Ces informations ne sont pas disponibles.

Tératogénicité

Ces informations ne sont pas disponibles.

Toxicité spécifique pour certains organes cibles - exposition unique Ces informations ne sont pas disponibles.

Toxicité spécifique pour certains organes cibles - exposition répétée Ces informations ne sont pas disponibles.

Danger par aspiration Ces informations ne sont pas disponibles.

11.2 Information supplémentaire

Effets systémiques: En cas d'ingestion en grande quantité: Nausée, Vomissements Aucun effet toxique n'est à craindre en cas de manipulation appropriée.

Page 6 de 9

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

 Code produit
 106404

 Nom du produit
 Chlorure de sodium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

SECTION 12. Informations écologiques

12.1 Toxicité

Toxicité pour les poissons CL50 Pimephales promelas (Vairon à grosse tête): 7.650 mg/l; 96 h (IUCLID) *Toxicité pour la daphnie et les autres invertébrés aquatiques* CE50 Daphnia magna (Grande daphnie): 1.000 mg/l; 48 h (IUCLID)

12.2 Persistance et dégradabilité

Biodégradabilité

Les méthodes pour déterminer la biodégradabilité ne s'appliquent pas aux substances inorganiques.

Contenu en composés organiques volatils (COV) pas de taxes des COV

12.3 Potentiel de bioaccumulation

Pas d'information disponible.

12.4 Mobilité dans le sol

Pas d'information disponible.

12.5 Résultats des évaluations PBT et vPvB

Aucune évaluation PBT/vPvB effectuée car aucune évaluation de sécurité c himique n'est requise/n'est menée.

12.6 Autres effets néfastes

Information écologique supplémentaire

Tout déversement dans l'environnement doit être évité.

SECTION 13. Considérations relatives à l'élimination

Méthodes de traitement des déchets

Les déchets doivent être éliminés conformément à la directive relative a ux déchets 2008/98/CE et aux réglementations locales et nationales en vi gueur. Laisser les produits chimiques dans les conteneurs d'origine. Pas de mélange avec d'autres déchets. Traiter les conteneurs non nettoyés c omme le produit lui-même.

Cf. www.retrologistik.com pour toutes les informations concernant les processus de retour des produits chimiques et des conteneurs ou nous conta cter en cas de questions supplémentaires.

atives au transport
/RID)
Produit non dangereux au sens des réglementations pour le transport.
i intérieures (ADN)
Produit non dangereux au sens des réglementations pour le transport.

Transport maritime (IMDG)

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 7 de 9

FICHE DE DONNÉES DE SÉCURITÉ conformément au Règlement (CE) No. 1907/2006 Code produit 106404 Nom du produit Chlorure de sodium pour analyse EMSURE® ACS, ISO, Reag. Ph Eur 14.1 - 14.6 Produit non dangereux au sens des réglementations pour le transport. 14.7 Transport en vrac conformément à l'annexe II de la convention Marpol 73/78 et au recueil IBC Non pertinent SECTION 15. Informations réglementaires 15.1 Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d'environnement Réglementations UE Réglementation relative aux 96/82/EC dangers liés aux accidents La Directive 96/82/CE ne s'applique pas majeurs (Réglementation relative aux Installations Classées) Règlement 1005/2009/CE relatif à des substances non réglementé qui appauvrissent la couche d'ozone Réglementation (CE) N 850/2004 du Parlement non réglementé européen et du Conseil européen du 29 avril 2004 sur les polluants organiques persistants et modifia nt la directive 79/117/CEE Règlement (CE) No 689/2008 concernant les non réglementé exportations et importations de produits chimiques dangereux Substances extrêmement préoccupantes (SVHC) Ce produit ne contient pas de substances extrêmement préoccupantes au-de là des limites de concentration réglementaires respectives ($\geq 0,1 \%$ (w/w), réglementation (EC) N° 1907/2006 (REACH), article 57). Législation nationale Classe de stockage 10 - 13 15.2 Évaluation de la sécurité chimique Aucune évaluation de la sécurité chimique selon la réglementation EU REA CH N° 1907/2006

Aucune évaluation de la sécurité chimique selon la réglementation EU REA CH N° 1907/2001 n'est réalisée pour ce produit.

SECTION 16. Autres informations

Conseils relatifs à la formation

Mise à disposition d'informations, d'instructions et de mesures de formation appropriées à l'intention des opérateurs.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 8 de 9

 Code produit
 106404

 Nom du produit
 Chlorure de sodium pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

Étiquetage (67/548/CEE ou 1999/45/CE)

Le produit ne nécessite pas d'étiquetage conformément aux directives de la CE et aux réglementations nationales du pays concerné.

Signification des abréviations et acronymes utilisés

Les abréviations et les acronymes utilisés peuvent être retrouvés sous h ttp://www.wikipedia.org.

Les indications données ici sont basées sur l'état actuel de nos connaissances. Elles décrivent les dispositions de sécurité à prendre vis à vis du produit concerné. Elles ne représentent pas une garantie sur les propriétés du produit.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 9 de 9

№ CAS	Numéro CE	Formule de Hill	Formule chimique	Masse molaire	Grade
7757-82-6	231-820-9	Na_2O_4S	Na_2SO_4	142.04 g/mol	ACS,ISO,Reag. Ph Eur

Na₂SO₄ – Fiche technique

Description	
Référence	106649
Replaces	SX0761-20
Informations proc	duit
Numéro CAS	7757-82-6
Numéro CE	231-820-9
Grade	ACS,ISO,Reag. Ph Eur
Formule de Hill	Na ₂ O ₄ S
Formule chimique	Na ₂ SO ₄
Molar Mass	142.04 g/mol
Code SH	2833 11 00
Informations physical	sico-chimiques
Densité	2.70 g/cm ³ (20 °C)
Point de fusion	888 °C
Valeur de pH	5.2 - 8.0 (50 g/l, H ₂ O, 20 °C)
Densité	1400 - 1600 kg/m³
Solubilité	44.55 g/l (20 °C)
Informations toxic	cologiques
DL 50 orale	DL50 Rat > 2000 mg/kg

Informations de sécurité selon le SGH			
RTECS	WE1650000		
Classe de stockage	10 - 13 Autres liquides ou matières solides		
WGK	WGK 1 pollue faiblement l'eau		
Élimination	14 Sels inorganiques: catégorie I. Solutions neutres de ces sels: catégorie D. Avant de verser le produit, contrôler le pH avec l'indicateur universel en bandelettes (art. 109535).		
Informations sur	le transport		
Déclaration RID 8	ADR (rail et route)	Kein Gefahrgut	
Déclaration IATA	DGR (transport aérien)	No Dangerous Good	
Déclaration Code	IMDG (transport maritime)	No Dangerous Good	
Caractéristiques			
Caractéristiques			
Assay (alkalimetric)		≥ 99.0 %	
Assay (alkalimetric, calculated on dried substance)		98.5 - 101.0 %	
Identity		passes test	
Appearance of solution		passes test	
Insoluble matter		≤ 0.01 %	
Acidity or alkalinity		passes test	
pH-value (5 %; water; 25 °C)		5.2 - 8.0	
Chloride (CI)		≤ 0.001 %	
Phosphate (PO ₄)		≤ 0.001 %	
Total nitrogen (N)		≤ 0.0005 %	
Heavy metals (as Pb)		≤ 0.0005 %	

Caractéristiques	
As (Arsenic)	≤ 0.0001 %
Ca (Calcium)	≤ 0.005 %
Fe (Iron)	≤ 0.0005 %
K (Potassium)	≤ 0.002 %
Mg (Magnesium)	≤ 0.001 %
Loss on drying (130 °C)	≤ 0.5 %
Loss on ignition (800 °C)	≤ 0.5 %
Corresponds to ACS, ISO, Reag. Ph Eur	•

Μ

FICHE DE DONNÉES DE SÉCURITÉ conformément au Règlement (CE) No. 1907/2006

Date de révision 26.04.2013 Version 6.3 SECTION 1. Identification de la substance/du mélange et de la société/l'entreprise 1.1 Identificateur de produit Code produit 106649 Sulfate de sodium anhydre pour analyse EMSURE® ACS, ISO, Reag. Nom du produit Ph Eur Numéro d'Enregistrement Aucun numéro d'enregistrement disponible pour cette substance car la REACH sub stance ou son utilisation sont dispensées d'enregistrement selon l'artic le 2 de la réglementation REACH (EC) N° 1907/2006, le tonnage annuel ne nécessite aucun enregistrement ou l'enregistrement est prévu pour un dél ai ultérieur. 1.2 Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées Utilisations identifiées Réactif pour analyses Pour de plus amples informations sur les utilisations, veuillez consulter le site Merck Chemicals (www.merck-chemicals.com). 1.3 Renseignements concernant le fournisseur de la fiche de données de sécurité Société Merck KGaA * 64271 Darmstadt * Allemagne * Tél. +49 6151 72-0 Service responsable EQ-RS * e-mail: prodsafe@merckgroup.com Représentation régionale Merck & Cie. Im Laternenacker 5 CH-8200 Schaffhausen Tel.: +41 (0)52 630 72 72

1.4 Numéro d'appel d'urgence

145 (Tox Info Suisse)

Fax.: +41 (0)52 630 72 55 information@merckgroup.com

SECTION 2. Identification des dangers

2.1 Classification de la substance ou du mélange

Cette substance n'est pas classée comme dangereuse selon la législation de l'Union Européenne.

2.2 Éléments d'étiquetage

Étiquetage (RÈGLEMENT (CE) No 1272/2008)

N'est pas une substance dangereuse selon le SGH.

Étiquetage (67/548/CEE ou 1999/45/CE)

Le produit ne nécessite pas d'étiquetage conformément aux directives de la CE et aux réglementations nationales du pays concerné.

2.3 Autres dangers

Aucun(e) à notre connaissance.

SECTION 3. Composition/informations sur les composants

3.1 Substance

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 1 de 8

Code produit Nom du produit	106649 Sulfate de sod	ium anhydre pour analyse EMSURE® ACS,ISO,Reag. Ph Eur
Formule	Na₂SO₄	Na₂O₄S (Hill)
NoCAS	7757-82-6	
NoCE	231-820-9	
Μ	142,04 g/mo	1
Pour le texte complet	des Phrases-H mention	nées dans ce chapitre, voir section 16.
Remarques	Aucun compo	sant dangereux selon le Règlement (CE) No.

3.2 Mélange

non applicable

SECTION 4. Premiers secours

4.1 Description des premiers secours

En cas d'inhalation: faire respirer de l'air frais.

En cas de contact avec la peau: laver abondamment à l'eau. Enlever les vêtements souillés.

En cas de contact avec les yeux : rincer abondamment à l'eau.

1907/2006

En cas d'ingestion: Faire boire de l'eau (maximal 2 verres), en cas de malaise, consulter un médecin.

4.2 Principaux symptômes et effets, aigus et différés

Nausée, Vomissements, troubles cardio-vasculaires

4.3 Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires Pas d'information disponible.

SECTION 5. Mesures de lutte contre l'incendie

5.1 Moyens d'extinction

Moyens d'extinction appropriés Utiliser des moyens d'extinction appropriés aux conditions locales et à l'environnement voisin.

Moyens d'extinction inappropriés Aucune limitation concernant les agents d'extinction pour cette substanc e/ce mélange.

5.2 Dangers particuliers résultant de la substance ou du mélange

Non combustible.

Possibilité d'émanation de vapeurs dangereuses en cas d'incendie à proximité. En cas d'incendie, il peut se produire un dégagement de (d'): Oxydes de soufre

5.3 Conseils aux pompiers

Équipement de protection spécial pour le personnel préposé à la lutte contre le feu En cas d'incendie, porter un appareil de protection respiratoire autonome.

Information supplémentaire

Rabattre les gaz/les vapeurs/le brouillard à l'aide d'eau pulvérisée. Empêcher les eaux d'extinction du feu de contaminer les eaux de surface ou le réseau d'alimentation souterrain.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 2 de 8

 Code produit
 106649

 Nom du produit
 Sulfate de sodium anhydre pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

SECTION 6. Mesures à prendre en cas de dispersion accidentelle

6.1 Précautions individuelles, équipement de protection et procédures d'urgence Conseil pour les non-secouristes: Eviter l'inhalation des poussières. Evacuer la zone dangereuse, respecter les procédures d'urgence, consulte r un spécialiste.

Conseil pour les secouristes:

Equipement de protection, voir section 8.

- 6.2 Précautions pour la protection de l'environnement
- Empêcher le produit de pénétrer dans les égouts.

6.3 Méthodes et matériel de confinement et de nettoyage

Recouvrir les drains. Collecter, lier et pomper les produits répandus. Respecter les éventuelles restrictions concernant les matériaux (voir se ctions 7 et 10). Récupérer à l'état sec. Acheminer vers l'élimination. Nettoyer. Eviter la formation de poussière.

6.4 Référence à d'autres sections

Indications concernant le traitement des déchets, voir section 13.

SECTION 7. Manipulation et stockage

7.1 Précautions à prendre pour une manipulation sans danger Conseils pour une manipulation sans danger Respecter les mises-en-garde de l'étiquette.

Mesures d'hygiène

Enlever tout vêtement souillé. Se laver les mains après le travail.

7.2 Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités

Conditions de stockage Bien fermé. A l'abri de l'humidité.

Conserver de +5°C à +30°C.

7.3 Utilisation(s) finale(s) particulière(s)

Aucune utilisation spécifique prévue à l'exception de celles mentionnées à la section 1.2.

SECTION 8. Contrôles de l'exposition/protection individuelle

8.1 Paramètres de contrôle

Ne contient pas de substances avec des valeurs limites d'exposition professionnelle. 8.2 Contrôles de l'exposition

Mesures d'ordre technique

Privilégier les mesures techniques et les opérations appropriées par rap port à l'utilisation d'un équipement de protection personnelle. Voir section 7.1.

Mesures de protection individuelle

Choisir les moyens de protection individuelle en raison de la concentration et de la quantité des substances dangereuses et du lieu de travail. S'informer auprès du fournisseur sur la résistance chimique des moyens de protection.

Protection des yeux/du visage Lunettes de sécurité

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 3 de 8

 Code produit
 106649

 Nom du produit
 Sulfate de sodium anhydre pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

Protection des mains contact total:

	Matière des gants: Épaisseur du gant:	Caoutchouc nitrile 0,11 mm
	Temps de pénétration:	> 480 min
contact par éclabou	ssures:	
	Matière des gants:	Caoutchouc nitrile
	Épaisseur du gant:	0,11 mm
	Temps de pénétration:	> 480 min

Les gants de protection utilisés doivent répondre aux spécifications de la directive CE 89/686/CEE et de la norme correspondante EN374, par exemple KCL 741 Dermatril® L (contact total), KCL 741 Dermatril® L (contact par éclaboussures).

Les temps de rupture mentionnés ont été obtenus par la société KCL lors de mesures en laboratoire selon la norme EN 374 sur des échantillons de matériaux pour les types de gants conseillés .

Cette recommandation concerne uniquement le produit repris dans la fiche de données de sécurité que nous fournissons et uniquement pour l'utilisation indiquée. En cas de solution ou de mélange avec d'autres substances et/ou de conditions différentes de celles de la norme EN 374, contactez le fournisseur de gants agréé CE, (par exemple : KCL GmbH, D-36124 Eichenzell, Internet : www.kcl.de).

Protection respiratoire

nécessaire en cas de formation de poussières.

Type de Filtre recommandé: Filtre P 1

L'entrepreneur doit s'assurer que la maintenance, le nettoyage et le contrôle des dispositifs de protection respiratoire sont exécutés conformément aux instructions du fabricant. Ces mesures doivent être correctement documentées.

Contrôles d'exposition liés à la protection de l'environnement

Empêcher le produit de pénétrer dans les égouts.

SECTION 9. Propriétés physiques et chimiques

9.1 Informations sur les propriétés physiques et chimiques essentielles

Forme	solide
Couleur	blanc
Odeur	inodore
Seuil olfactif	non applicable
рН	5,2 - 8,0 à 50 g/l 20 °C
Point de fusion	888 °C
Point/intervalle d'ébullition	non applicable, (décomposition)
Point d'éclair	non applicable
Taux d'évaporation	Pas d'information disponible.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 4 de 8

_

Code produit Nom du produit	106649 Sulfate de sodium anhydre pour analyse EMSURE® ACS,ISO,Reag. Ph Eur	
· · · · · ·		
Inflammabilité (solide, gaz)	Ce produit n'est pas inflammable.	
Limite d'explosivité, inférieure	Pas d'information disponible.	
Limite d'explosivité, supérieur	e Pas d'information disponible.	
Pression de vapeur	non applicable	
Densité de vapeur relative	Pas d'information disponible.	
Densité relative	2,70 g/cm³ à 20 °C	
Hydrosolubilité	200 g/l à 20 °C	
Coefficient de partage: n- octanol/eau	non applicable	
Température d'auto- inflammabilité	> 400 °C Méthode: NF T 20-036 ne s'enflamme pas	
Température de décompositio	n > 890 °C	
Viscosité, dynamique	Pas d'information disponible.	
Propriétés explosives	Non classé parmi les explosifs.	
Propriétés comburantes	non	
9.2 Autres données		
Température d'inflammation	non applicable	
Masse volumique apparente	env.1.400 - 1.600 kg/m³	

SECTION 10. Stabilité et réactivité

10.1 Réactivité

Voir ci-dessous

10.2 Stabilité chimique

La production est chimiquement stable dans conditions ambiantes standard (température ambiante).

10.3 Possibilité de réactions dangereuses

Danger d'explosion avec :

fusion, avec, Aluminium

10.4 Conditions à éviter

aucune information disponible

10.5 Matières incompatibles

aucune information disponible

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 5 de 8

 Code produit
 106649

 Nom du produit
 Sulfate de sodium anhydre pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

10.6 Produits de décomposition dangereux

en cas d'incendie: voir paragraphe 5.

SECTION 11. Informations toxicologiques

11.1 Informations sur les effets toxicologiques

Toxicité aiguë par voie orale DL50 rat: > 2.000 mg/kg OCDE Ligne directrice 423(ECHA)

Symptômes: Conséquences possibles:, Nausée, Vomissements *Toxicité aiguë par inhalation* Ces informations ne sont pas disponibles. *Toxicité aiguë par voie cutanée*

Ces informations ne sont pas disponibles.

Irritation de la peau lapin Résultat: pas dirritation. OCDE Ligne directrice 404

Irritation des yeux lapin Résultat: irritation légère OCDE Ligne directrice 405

Sensibilisation

Ces informations ne sont pas disponibles.

Mutagénicité sur les cellules germinales

Génotoxicité in vitro Test de Ames Résultat: négatif (IUCLID)

Cancérogénicité

Ces informations ne sont pas disponibles.

Toxicité pour la reproduction Ces informations ne sont pas disponibles.

Tératogénicité

Ces informations ne sont pas disponibles.

Toxicité spécifique pour certains organes cibles - exposition unique Ces informations ne sont pas disponibles.

Toxicité spécifique pour certains organes cibles - exposition répétée Ces informations ne sont pas disponibles.

Danger par aspiration Ces informations ne sont pas disponibles.

11.2 Information supplémentaire

Effets systémiques: Après absorption de grandes quantités: troubles cardio-vasculaires Problèmes de: Appareil gastro-intestinale Dans des conditions de manipulation appropriée, un danger n'est, cependant, pas probable.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 6 de 8

 Code produit
 106649

 Nom du produit
 Sulfate de sodium anhydre pour analyse EMSURE® ACS,ISO,Reag. Ph Eur

À manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.

SECTION 12. Informations écologiques

12.1 Toxicité

Toxicité pour le poisson CL50 Gambusia affinis (Guppy sauvage): 120 mg/l; 96 h (IUCLID) Toxicité pour la daphnie et les autres invertébrés aquatiques CE50 Daphnia magna: 2.564 mg/l; 48 h (IUCLID) Toxicité pour les bactéries EC10 Pseudomonas putida: > 1.000 mg/l; 16 h (IUCLID)

12.2 Persistance et dégradabilité Pas d'information disponible.

12.3 Potentiel de bioaccumulation

Coefficient de partage: n-octanol/eau non applicable

12.4 Mobilité dans le sol Pas d'information disponible.

12.5 Résultats des évaluations PBT et VPVB

Aucune évaluation PBT/vPvB effectuée car aucune évaluation de sécurité c himique n'est

requise/n'est menée.

12.6 Autres effets néfastes

Information écologique supplémentaire Tout déversement dans l'environnement doit être évité.

SECTION 13. Considérations relatives à l'élimination

Méthodes de traitement des déchets

Les déchets doivent être éliminés conformément à la directive relative a ux déchets 2008/98/CE et aux réglementations locales et nationales en vi gueur. Laisser les produits chimiques dans les conteneurs d'origine. Pas de mélange avec d'autres déchets. Traiter les conteneurs non nettoyés c omme le produit lui-même.

Cf. www.retrologistik.com pour toutes les informations concernant les processus de retour des produits chimiques et des conteneurs ou nous conta cter en cas de questions supplémentaires.

(ID)
Produit non dangereux au sens des réglementations pour le transport.
itérieures (ADN)
Produit non dangereux au sens des réglementations pour le transport.
1

Transport maritime (IMDG)

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 7 de 8

Code produit	106649
Nom du produit	Sulfate de sodium anhydre pour analyse EMSURE® ACS, ISO, Reag. Ph Eur
14.1 - 14.6	Produit non dangereux au sens des réglementations pour le transport.
14.7 Transport en vra IBC	c conformément à l'annexe II de la convention Marpol 73/78 et au recueil
Sans rapport	
SECTION 15. Informations	s réglementaires gislation particulières à la substance ou au mélance en matière de sécurité, de santé et

15.1 Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d'environnement

Législation nationale	
Classe de stockage	10 - 13

15.2 Évaluation de la sécurité chimique

Aucune évaluation de la sécurité chimique selon la réglementation EU REA CH N° 1907/2006 n'est réalisée pour ce produit.

SECTION 16. Autres informations

Conseils relatifs à la formation

Mise à disposition d'informations, d'instructions et de mesures de formation appropriées à l'intention des opérateurs.

signification des abréviations et acronymes utilisés

Les abréviations et les acronymes utilisés peuvent être retrouvés sous h ttp://www.wikipedia.org.

Les indications données ici sont basées sur l'état actuel de nos connaissances. Elles décrivent les dispositions de sécurité à prendre vis à vis du produit concerné. Elles ne représentent pas une garantie sur les propriétés du produit.

Page 8 de 8

NaNO3 –	Fiche	technique
---------	-------	-----------

Nº CAS	Numéro CE	Formule de Hill	Formule chimique	Masse molaire	Grade
7631-99-4	231-554-3	NNaO ₃	NaNO ₃	84.99 g/mol	FCC,E 251

Description			
Référence	106535		
Synonymes	Nitric acid sodium salt		
Informations proc	luit		
Numéro CAS	7631-99-4		
Numéro CE	231-554-3		
Grade	FCC,E 251		
Formule de Hill	NNaO ₃		
Formule chimique	NaNO ₃		
Molar Mass	84.99 g/mol		
Code SH	3105 10 00		
Informations phys	Informations physico-chimiques		
Densité	2.26 g/cm ³ (20 °C)		
Point de fusion	308 °C		
Valeur de pH	5.5 - 8.0 (50 g/l, H ₂ O, 20 °C)		
Densité	1200 kg/m³		
Solubilité	874 g/l (20 °C)		
Informations toxic	cologiques		
DL 50 orale	DL50 Rat 1267 mg/kg		
Informations de sécurité selon le SGH			
RTECS	WC5600000		
Classe de stockage	5.1B Matières dangereuses oxydantes		
WGK	WGK 1 pollue faiblement l'eau		

Informations de sécurité selon le SGH		
Élimination	22 Les peroxydes inorganiques et les agents d'oxydation ainsi que le bromure et l'iode sont réduits en produits de réaction moins dangereux par l'introduction dans une solution de thiosulfate de sodium (art. 106513) - en acidifiant, le cas échéant; récipient D ou E. Les oxydants difficilement solubles sont collectés à part dans le récipient E ou I.	
Informations sur	la sécurité	
Symboles de danger	Oxidising Harmful	
Catégories de danger	comburant, nocif	
Phrase R (de risques)	R 8-22 Favorise l'inflammation des matières combustibles.Nocif en cas d'ingestion.	
Phrase S (de sécurité)	S 22-41 Ne pas respirer les poussières.En cas d'incendie et/ou d'explosion, ne pas respirer les fumées.	
Informations sur le transport		
Déclaration RID & ADR (rail et route) UN 1498 Natriumnitrat, 5.1, III		UN 1498 Natriumnitrat, 5.1, III
Déclaration IATA-DGR (transport aérien)		UN 1498 SODIUM NITRATE, 5.1, III
Déclaration Code IMDG (transport maritime) UN 1498 SODIUM NITRATE, 5.1, III		UN 1498 SODIUM NITRATE, 5.1, III
Caractéristiques		
Caractéristiques		
Assay (acidimetri	sch, after drying)	99.0 - 100.5 %
Identity		passes test
pH-value (5 %; water)		5.5 - 8.3
Total chlorine		≤ 0.2 %
Nitrite (NO ₂)		≤ 0.002 %
As (Arsenic)		≤ 0.0003 %
Fe (Iron)		≤ 0.001 %
K (Potassium)		≤ 0.01 %

Caractéristiques		
Hg (Mercury)	≤ 0.0001 %	
Pb (Lead)	≤ 0.0002 %	
Zn (Zinc)	≤ 0.001 %	
Loss on drying (105 °C)	≤ 2.0 %	

Corresponds to FCC,E 251

Conforms to the purity criteria on food additives according to the current European Commission Regulation.

Μ

FICHE DE DONNÉES DE SÉCURITÉ conformément au Règlement (CE) No. 1907/2006

Date de révision 12.05.2014 Version 8.0 SECTION 1. Identification de la substance/du mélange et de la société/l'entreprise 1.1 Identificateur de produit Code produit 106535 Nom du produit Sodium nitrate crist. très pur FCC, E 251 Numéro d'Enregistrement Aucun numéro d'enregistrement disponible pour cette substance car la REACH sub stance ou son utilisation sont dispensées d'enregistrement selon l'artic le 2 de la réglementation REACH (EC) N° 1907/2006, le tonnage annuel ne nécessite aucun enregistrement ou l'enregistrement est prévu pour un dél ai ultérieur. No.-CAS 7631-99-4 1.2 Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées Utilisations identifiées Matériaux destinés aux applications techniques Pour de plus amples informations sur les utilisations, veuillez consulter le site Merck Chemicals (www.merck-chemicals.com). 1.3 Renseignements concernant le fournisseur de la fiche de données de sécurité

.4 Numéro d'appel d'urgence	145 (Tox Info Suisse)
	Im Laternenacker 5 CH-8200 Schaffhausen Tel.: +41 (0)52 630 72 72 Fax.: +41 (0)52 630 72 55 information@merckgroup.com
Représentation régionale	Merck & Cie.
Service responsable	EQ-RS * e-mail: prodsafe@merckgroup.com
Société	Merck KGaA * 64271 Darmstadt * Allemagne * Tél. +49 6151 72-0

SECTION 2. Identification des dangers

1

2.1 Classification de la substance ou du mélange Classification (RÈGLEMENT (CE) No 1272/2008)

Matière solide comburante, Catégorie 3, H272 Toxicité aiguë, Catégorie 4, Oral(e), H302 Pour le texte complet des Phrases-H mentionnées dans ce chapitre, voir section 16.

Classification (67/548/CEE ou 1999/45/CE)

0	Comburant	R8
Xn	Nocif	R22

Pour le texte complet des phrases-R mentionnées dans cet article, voir Section 16.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 1 de 11

Code produit Nom du produit 106535 Sodium nitrate crist. très pur FCC,E 251

2.2 Éléments d'étiquetage

Étiquetage (RÈGLEMENT (CE) No 1272/2008) Pictogrammes de danger

Mention d'avertissement Attention

Mentions de danger H272 Peut aggraver un incendie; comburant. H302 Nocif en cas d'ingestion.

Conseils de prudence Prévention P260 Ne pas respirer les poussières.

Etiquetage réduit (≤125 ml)

Pictogrammes de danger

Mention d'avertissement Attention

No.-CAS 7631-99-4

2.3 Autres dangers Aucun(e) à notre connaissance.

SECTION 3. Composition/informations sur les composants 3.1 Substance

Formule	NaNO₃	NNaO₃ (Hill)
NoCE	231-554-3	
M	84,99 g/mol	

Composants dangereux (RÈGLEMENT (CE) No 1272/2008)

 Nom Chimique (Concentration)

 No.-CAS
 Numéro

 d'enregistrement

 Sodium nitrate (<= 100 %)</td>

 7631-99-4
 *)

Classification

Matière solide comburante, Catégorie 3, H272 Toxicité aiguë, Catégorie 4, H302

*) Aucun numéro d'enregistrement disponible pour cette substance car la sub stance ou son utilisation sont dispensées d'enregistrement selon l'artic le 2 de la réglementation REACH (EC) N° 1907/2006, le tonnage annuel ne nécessite aucun enregistrement ou l'enregistrement est prévu pour un dél ai ultérieur.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 2 de 11

Code produit106535Nom du produitSodium nitrate crist. très pur FCC,E 251

Pour le texte complet des Phrases-H mentionnées dans ce chapitre, voir section 16.

Composants dangereux (1999/45/CE)

Nom Chimique (Concentration)No.-CASClassificationSodium nitrate (<= 100 %)</td>7631-99-4O, Comburant; R8Xn, Nocif; R22

Pour le texte complet des phrases-R mentionnées dans cet article, voir Section 16.

3.2 Mélange

non applicable

SECTION 4. Premiers secours

4.1 Description des premiers secours

En cas d'inhalation: faire respirer de l'air frais.

En cas de contact avec la peau: Enlever immédiatement tous les vêtements contaminés. Rincer la peau à l'eau/ se doucher.

En cas de contact avec les yeux : rincer abondamment à l'eau.

En cas d'ingestion: Faire boire immédiatement de l'eau (maximal 2 verres). Consulter un médecin.

4.2 Principaux symptômes et effets, aigus et différés

effets irritants, Diarrhée, Nausée, Vomissements Concerne les nitrites/nitrates en général: la résorption de quantités importantes provoque une méthémoglobinémie.

4.3 Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires Pas d'information disponible.

SECTION 5. Mesures de lutte contre l'incendie

5.1 Moyens d'extinction

Moyens d'extinction appropriés Utiliser des moyens d'extinction appropriés aux conditions locales et à l'environnement proche.

Movens d'extinction inappropriés

Aucune limitation concernant les agents d'extinction pour cette substanc e/ce mélange.

5.2 Dangers particuliers résultant de la substance ou du mélange

Non combustible. Effet comburant par libération d'oxygène. Possibilité d'émanation de vapeurs dangereuses en cas d'incendie à proximité. En cas d'incendie, il peut se produire un dégagement de (d'): azote oxydes, gaz nitreux

5.3 Conseils aux pompiers

Équipement de protection spécial pour les pompiers En cas d'incendie, porter un appareil de protection respiratoire autonome.

Information supplémentaire

Rabattre les gaz/les vapeurs/le brouillard à l'aide d'eau pulvérisée. Empêcher les eaux d'extinction du feu de contaminer les eaux de surface ou le réseau d'alimentation souterrain.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 3 de 11

Code produit106535Nom du produitSodium nitrate crist. très pur FCC,E 251

SECTION 6. Mesures à prendre en cas de dispersion accidentelle

6.1 Précautions individuelles, équipement de protection et procédures d'urgence

Conseil pour les non-secouristes: Eviter le contact avec la substance. Eviter l'inhalation des poussières. Assurer une ventilation adéquate. Evacuer la zone dangereuse, respecter les procédures d'urgence, consulte r un spécialiste.

Conseil pour les secouristes: Equipement de protection, voir section 8.

6.2 Précautions pour la protection de l'environnement

Ne pas jeter les résidus à l'égout.

6.3 Méthodes et matériel de confinement et de nettoyage

Recouvrir les drains. Collecter, lier et pomper les produits répandus. Respecter les éventuelles restrictions concernant les matériaux (voir se ctions 7 et 10). Récupérer à l'état sec. Acheminer vers l'élimination. Nettoyer. Eviter la formation de poussière.

6.4 Référence à d'autres sections

Indications concernant le traitement des déchets, voir section 13.

SECTION 7. Manipulation et stockage

7.1 Précautions à prendre pour une manipulation sans danger

Conseils pour une manipulation sans danger Respecter les mises-en-garde de l'étiquette.

Mesures d'hygiène

Enlever tout vêtement souillé. Une protection préventive de la peau est recommandée. Se laver les mains après le travail.

7.2 Conditions nécessaires pour assurer la sécurité du stockage, tenant compte d'éventuelles incompatibilités Conditions de stockage

Bien fermé. A l'abri de l'humidité. A l'écart de substances combustibles.

Température de stockage recommandée voir sur l'étiquette du produit.

7.3 Utilisation(s) finale(s) particulière(s)

Aucune utilisation spécifique prévue à l'exception de celles mentionnées à la section 1.2.

SECTION 8. Contrôles de l'exposition/protection individuelle

8.1 Paramètres de contrôle

Ne contient pas de substances avec des valeurs limites d'exposition professionnelle.

8.2 Contrôles de l'exposition

Mesures d'ordre technique

Privilégier les mesures techniques et les opérations appropriées par rap port à l'utilisation d'un équipement de protection personnelle.

Voir section 7.1.

Mesures de protection individuelle

Choisir les moyens de protection individuelle en raison de la concentration et de la quantité des substances dangereuses et du lieu de travail. S'informer auprès du fournisseur sur la résistance chimique des moyens de protection.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 4 de 11

Code produit	106535
Nom du produit	Sodium nitrate crist. très pur FCC, E 251

Protection des yeux/du visage Lunettes de sécurité

Protection des mains contact total:

со

	Matière des gants: Épaisseur du gant: Temps de pénétration:	Caoutchouc nitrile 0,11 mm > 480 min
ntact par éclab	oussures:	
	Matière des gants:	Caoutchouc nitrile
	Épaisseur du gant:	0,11 mm
	Temps de pénétration:	> 480 min

Les gants de protection utilisés doivent répondre aux spécifications de la directive CE 89/686/CEE et de la norme correspondante EN374, par exemple KCL 741 Dermatril® L (contact total), KCL 741 Dermatril® L (contact par éclaboussures).

Les temps de rupture mentionnés ont été obtenus par la société KCL lors de mesures en laboratoire selon la norme EN 374 sur des échantillons de matériaux pour les types de gants conseillés .

Cette recommandation concerne uniquement le produit repris dans la fiche de données de sécurité que nous fournissons et uniquement pour l'utilisation indiquée. En cas de solution ou de mélange avec d'autres substances et/ou de conditions différentes de celles de la norme EN 374, contactez le fournisseur de gants agréé CE, (par exemple : KCL GmbH, D-36124 Eichenzell, Internet : www.kcl.de).

Autres équipement de protection vêtements de protection

Protection respiratoire

nécessaire en cas de formation de poussières.

Type de Filtre recommandé: Filtre P 2

L'entrepreneur doit s'assurer que la maintenance, le nettoyage et le contrôle des dispositifs de protection respiratoire sont exécutés conformément aux instructions du fabricant. Ces mesures doivent être correctement documentées.

Contrôles d'exposition liés à la protection de l'environnement

Ne pas jeter les résidus à l'égout.

SECTION 9. Propriétés physiques et chimiques

9.1 Informations sur les propriétés physiques et chimiques essentielles

Forme	solide
Couleur	incolore
Odeur	inodore
Seuil olfactif	non applicable
рН	5,5 - 8,0 à 50 g/l 20 °C
Point de fusion	308 °C
Point/intervalle d'ébullition	non applicable

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 5 de 11

ode produit 106535 om du produit Sodium nitrate crist. très pur FCC,E 251	
5	
Point d'éclair	n'a pas de point d'éclair
Taux d'évaporation	Pas d'information disponible.
Inflammabilité (solide, gaz)	Ce produit n'est pas inflammable.
Limite d'explosivité, inférieure	non applicable
Limite d'explosivité, supérieur	e non applicable
Pression de vapeur	Pas d'information disponible.
Densité de vapeur relative	non applicable
Densité	2,26 g/cm³ à 20 °C
Densité relative	Pas d'information disponible.
Hydrosolubilité	874 g/l à 20 °C
Coefficient de partage: n-	Pas d'information disponible.
Température d'auto-	Pas d'information disponible.
Température de décompositio	n > 380 °C
Viscosité, dynamique	Pas d'information disponible.
Propriétés explosives	Non classé parmi les explosifs.
Propriétés comburantes	Peut aggraver un incendie; comburant.
	La substance ou le mélange est classé comme oxydant dans la catégorie 3.
9.2 Autres données	
Température d'inflammation	non applicable
Masse volumique apparente	env.1.200 kg/m³

SECTION 10. Stabilité et réactivité

10.1 Réactivité

Voir ci-dessous

10.2 Stabilité chimique

La production est chimiquement stable dans conditions ambiantes standard (température ambiante).

10.3 Possibilité de réactions dangereuses

Danger d'explosion avec :

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 6 de 11

Code produit106535Nom du produitSodium nitrate crist. très pur FCC,E 251

Poudres métalliques, aluminium oxyde, bore phosphure, Cyanures, Anhydride acétique, sodium phosphite, sdium thiosulfate, acide performique, soufre, Chlorure de polyvinyle Danger d'inflammation ou formation de gaz ou de vapeurs inflammables avec:, Danger d'explosion avec :

substances organiques combustibles, substances oxydables, carbone, Oxydes d'arsenic

10.4 Conditions à éviter

Réchauffement (décomposition).

10.5 Matières incompatibles aucune information disponible

10.6 Produits de décomposition dangereux

en cas d'incendie: voir paragraphe 5.

SECTION 11. Informations toxicologiques

11.1 Informations sur les effets toxicologiques

Toxicité aiguë par voie orale DL50 rat: 1.267 mg/kg (RTECS)

Symptômes: Irritation des muqueuses, Nausée, Vomissements, Diarrhée résorption

Toxicité aiguë par inhalation

Symptômes: faibles irritations des muqueuses Toxicité aiguë par voie cutanée Ces informations ne sont pas disponibles. Irritation de la peau Ces informations ne sont pas disponibles. Irritation des yeux irritation légère Sensibilisation Ces informations ne sont pas disponibles. Mutagénicité sur les cellules germinales Ces informations ne sont pas disponibles. Cancérogénicité Ces informations ne sont pas disponibles. Toxicité pour la reproduction Ces informations ne sont pas disponibles. Tératogénicité Ces informations ne sont pas disponibles. Toxicité spécifique pour certains organes cibles - exposition unique Ces informations ne sont pas disponibles Toxicité spécifique pour certains organes cibles - exposition répétée Ces informations ne sont pas disponibles. Danger par aspiration

Ces informations ne sont pas disponibles.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 7 de 11

Code produit106535Nom du produitSodium nitrate crist. très pur FCC,E 251

11.2 Information supplémentaire

En cas de résorption de grandes quantités: Méthémoglobinémie avec céphalées, troubles du rythme cardiaque, chute de tension, dyspnée et spasmes, syndrome directeur : cyanose (coloration bleue du sang). Concerne les nitrites/nitrates en général: la résorption de quantités importantes provoque une méthémoglobinémie. D'autres propriétés dangereuses ne peuvent pas être exclues. À manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.

SECTION 12. Informations écologiques

12.1 Toxicité

Toxicité pour les poissons CL50 Ictalurus catus (Poisson chat): 6.200 mg/l; 96 h (IUCLID) Toxicité pour la daphnie et les autres invertébrés aquatiques CE50 Daphnia magna (Grande daphnie): 3.581 mg/l; 48 h (IUCLID)

12.2 Persistance et dégradabilité

Biodégradabilité

Les méthodes pour déterminer la biodégradabilité ne s'appliquent pas aux substances inorganiques.

Contenu en composés organiques volatils (COV) pas de taxes des COV

12.3 Potentiel de bioaccumulation

Pas d'information disponible.

12.4 Mobilité dans le sol

Pas d'information disponible.

12.5 Résultats des évaluations PBT et vPvB

Aucune évaluation PBT/vPvB effectuée car aucune évaluation de sécurité c himique n'est requise/n'est menée.

12.6 Autres effets néfastes

Information écologique supplémentaire Tout déversement dans l'environnement doit être évité.

Page 8 de 11

106535 Code produit Nom du produit Sodium nitrate crist. très pur FCC, E 251

SECTION 13. Considérations relatives à l'élimination

Méthodes de traitement des déchets

Les déchets doivent être éliminés conformément à la directive relative a ux déchets 2008/98/CE et aux réglementations locales et nationales en vi gueur. Laisser les produits chimiques dans les conteneurs d'origine. Pas de mélange avec d'autres déchets. Traiter les conteneurs non nettoyés c omme le produit lui-même.

Cf. www.retrologistik.com pour toutes les informations concernant les processus de retour des produits chimiques et des conteneurs ou nous conta cter en cas de questions supplémentaires.

SECTION 14. Informations relatives au	u transport
Transport par route (ADR/RID)	
14.1 Numéro ONU	UN 1498
14.2 Nom d'expédition des Nations unies	Nitrate de sodium
14.3 Classe	5.1
14.4 Groupe d'emballage	III
14.5 Dangereux pour l'environnement	
14.6 Précautions particulières à prendre par l'utilisateur	oui
Code de restriction en tunnels	E
Transport par voies d'equi intériou	
Non pertinent	
Transport aérien (IATA)	
14.1 Numéro ONU	UN 1498
14.2 Nom d'expédition des Nations unies	SODIUM NITRATE
14.3 Classe	5.1
14.4 Groupe d'emballage	III
14.5 Dangereux pour l'environnement	
14.6 Précautions particulières à prendre par l'utilisateur	non
Transport maritime (IMDG)	
14.1 Numéro ONU	UN 1498
14.2 Nom d'expédition des Nations unies	SODIUM NITRATE
14.3 Classe	5.1
14.4 Groupe d'emballage	III
14.5 Dangereux pour l'environnement	
14.6 Précautions particulières à	oui
prendre par l'utilisateur No EMS	F-A S-Q
Les Fiches de Données de Sécurité pour les art	icles du catalogue sont également disponible sur www.merckgroup.com

Page 9 de 11

Code produit	106535
Nom du produit	Sodium nitrate crist. très pur FCC, E 251

14.7 Transport en vrac conformément à l'annexe II de la convention Marpol 73/78 et au recueil IBC

Non pertinent

SECTION 15. Informations réglementaires

15.1 Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d'environnement

	<i>Réglementations UE</i> Réglementation relative aux dangers liés aux accidents majeurs (Réglementation relative aux Installations Classées)	96/82/EC Comburant 3 Quantité 1: 50 t Quantité 2: 200 t	
	Restrictions professionnelles	Suivre la directive 94/3 jeunesse au travail.Re la protection de la ma les réglementations na	33/CE au sujet de la protection de la especter les restrictions de travail relatives à ternité conformément à Dir 92/85/CEE ou ationales p lus sévères, le cas échéant.
	Règlement 1005/2009/CE rela qui appauvrissent la couche d	atif à des substances l'ozone	non réglementé
Réglementation (CE) N 850/2004 du Parlement non réglementé européen et du Conseil européen du 29 avril 2004 sur les polluants organiques persistants et modifia nt la directive 79/117/CEE			non réglementé
	Règlement (CE) No 689/2008 exportations et importations d dangereux	concernant les e produits chimiques	non réglementé
	Substances extrêmement pré	occupantes (SVHC)	Ce produit ne contient pas de substances extrêmement préoccupantes au-de là des limites de concentration réglementaires respectives (≥ 0,1 % (w/w), réglementation (EC) N° 1907/2006 (REACH), article 57).
	<i>Législation nationale</i> Classe de stockage	5.1B	
15	5.2 Évaluation de la sécurité ch	imique	
		·····	

Aucune évaluation de la sécurité chimique selon la réglementation EU REA CH N° 1907/2006 n'est réalisée pour ce produit.

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 10 de 11

106535 Code produit Nom du produit Sodium nitrate crist. très pur FCC, E 251

SECTION 16. Autres informations

Texte complet des	Phrases-H citées dans les sections 2 et 3.
H272 H302	Peut aggraver un incendie; comburant. Nocif en cas d'ingestion.
Texte intégral des	phrases R mentionnées dans les sections 2 et 3
R 8	Favorise l'inflammation des matières combust
R22	Nocif en cas d'ingestion.

В	Favorise l'inflammation des matières combustibles.
2	Nocif en cas d'ingestion.

Conseils relatifs à la formation

Mise à disposition d'informations, d'instructions et de mesures de formation appropriées à l'intention des opérateurs.

Étiquetage (67/548/CEE ou 1999/45/CE)

Symbole(s)	<u>e</u> O	Comburant
	🗙 Xn	Nocif
Phrase(s) R	8-22	Favorise l'inflammation des matières combustibles. Nocif en cas d'ingestion.
Phrase(s) S	22-41	Ne pas respirer les poussières. En cas d'incendie et/ou d'explosion, ne pas respirer les fumées.
NoCE	231-554-3	
Etiquetage	réduit (≤125 ml)	
Symbole(s) 😸	Comburant
-,	X O	Nocif
	Xn	
Phrase(s) I	R 22	Nocif en cas d'ingestion.

Signification des abréviations et acronymes utilisés

Les abréviations et les acronymes utilisés peuvent être retrouvés sous h ttp://www.wikipedia.org.

Les indications données ici sont basées sur l'état actuel de nos connaissances. Elles décrivent les dispositions de sécurité à prendre vis à vis du produit concerné. Elles ne représentent pas une garantie sur les propriétés du produit

Les Fiches de Données de Sécurité pour les articles du catalogue sont également disponible sur www.merckgroup.com

Page 11 de 11

BOUTIQUE ET ATELIER ARTECH

Site web: www.artech-avignon.com

	Fiche Technique	
KLUCEL G		
Version : 1	Dernière mise à jour : 04.2003	

Hydroxy-propyl-cellulose fait pour la création de support d'enzyme ou de gélification de solvants. Ajout de tensioactif, rabaissant la tension superficielle de l'eau ou des solvants organiques, il augmente le pouvoir mouillant de la solution et diminuant le pouvoir pénétrant dans un corps poreux ou la capacité de ruissellement capillaire. Propriété épaississante : modifie la viscosité des solutions, émulsions et dispersions aqueuses et organiques. Il forme des films élastiques thermoplastiques, non collant, peu sensible à l'humidité. Utilisé dans la restauration des matériaux en papier comme coulant et adhésif, mais aussi comme consolidant. Soluble dans l'eau et dans les solvants organiques polarisés.

CARACTERISTIQUES :

- Hydroxylpropylcellulose en poudre
- Chimiquement neutre et réversible
- Très bonne résistance à la dégradation biologique et bactérienne .
- Non toxique, pH stable
- Totalement transparente en séchant

Il est recommandé de stocker le produit en milieu sec et sain et éloigné de toute source de chaleur.

PREPARATIONS/APPLICATIONS:

. préparation en base aqueuse :

Ajouter la poudre, sous agitation modérée, dans une eau maintenue à une température audessous de 38°C. Une dispersion lente permet une bonne séparation des particules. Continuer l'agitation jusqu'à l'obtention d'une solution homogène. La concentration est fonction des travaux à effectuer, elle peut aller de 1 à 40 g/litre ou plus. La KLUCEL G est insoluble dans l'eau au-dessus de 45°C

. préparation en base alcoolique :

- L'utilisation en base alcoolique est très intéressante dans le cas de doublage de papiers délicats tels que :
 - . doublage de calques
 - . collage de charnières en papier japon
 - . renfort des faiblesses au verso des estampes et gravures
 - . renfort dans les marges des volumes à restaurer (sans les démonter)

. restauration au verso des documents comportant des encres ferrogaliques Ces méthodes de renfort consistent, en premier lieu, en l'application d'un papier japon sur le verso du document et, en second lieu, au passage de la préparation alcool + KLUCEL. L'adhésion se fait par migration de la colle au travers du papier japon. La préparation se fait principalement en utilisant l'éthanol : faire chauffer l'éthanol au bain marie et ajouter très lentement la KLUCEL selon la concentration désirée. Laisser reposer.

Page 1 sur 2

BOUTIQUE ET ATELIER ARTECH

Site web : www.artech-avignon.com

Il est préférable de ne préparer que de petites quantités qu'il est bien de stocker dans des récipients en verre.

CONDITIONNEMENT : 100G 500G

Page 2 sur 2

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

Parafilm[®] M

Product Numbers P 7793, P 7543, P 7668, and P 6543

Product Description

Gas Permeability (permeability rates corrected to 760 mm pressure): Oxygen: 150 cc/m²/24 hours Carbon dioxide: 400 cc/m²/24 hours (both at about 22.8 YC, 50% relative humidity (R.H.)) Water vapor: 0.88 g/m²/24 hours (37.8)C and 90% R.H. vs desiccant).

Size:	
P 7543	2 in x 250 ft
P 7793	4 in x 125 ft
P 7668	4 in x 250 ft
P 6543	20 in x 50 ft

Parafilm M is a semi-transparent, flexible, thermoplastic, and highly waterproof sheet material. It is practically colorless, odorless and is approximately 0.13 mm in thickness. It is permeable to gases, but highly insensitive to moisture loss and moisture absorption, thus making it ideal for protecting the contents of broth tubes, flasks, culture tubes, and petri dishes. The permeability of either oxygen or carbon dioxide should not be affected at different relative humidities because of the low water permeability and insensitivity of Parafilm to moisture vapor.

Chemical Reactivity: No apparent effects in 24 hours: Hydrochloric acid (12 M) Nitric acid (16 M) Sulfuric acid (18 M) Ammonium hydroxide (28% NH₃) Sodium hydroxide (22%) Sodium chloride solution (20%) Isopropanol alcohol (99%) Ethanol (95%), no apparent effect except some face whitening in 24 hours Potassium permanganate (5%), no apparent effect, except for some permanent dark brown coloration after 18 hours; 0.1%, same as 5% except slightly less color resulted Iodine solution (0.1 N), no effect except brown staining in 18 hours. Carbon tetrachloride, chloroform and ethyl ether: dissolved film on contact.

Temperature effect: the film becomes soft and sticky at about 54-66 YC.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Parafilm is a registered trademark of Pechenev Plastics Packaging.

ARO/CMK/RXR 10/03

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

Liste des figures

Figure 1 : Emplacement géographique du site d'Orbe-Boscéaz, à proximité d'Yverdon. ©Google, 2015.
Figure 2 : Route cantonale et sortie d'autoroute. ©Google, 2015
Figure 3 : Bovins à proximité du site. ©Etat de Vaud - Aventicum, 2013
Figure 4 : Vue du site en hiver. ©Etat de Vaud - Aventicum, 2013
Figure 5 : Système de « ventilation intelligente » dans les tranchées des mosaïques. ©Etat de Vaud -
Aventicum, 2013
Figure 6 : Capteur. ©Etat de Vaud - Aventicum, 2013
Figure 7 : Processeur. ©Etat de Vaud - Aventicum, 20135
Figure 8 : Charte psychrométrique - variations d'humidité relative par rapport à la pression et à la
température. ©CarrierCorporation,19756
Figure 9 : Climat du pavillon IV en 2011. Trait épais = climat de la tranchée, trait fin= climat du local.
©Etat de Vaud - Aventicum, 20117
Figure 10 : Climat du pavillon III en 2011. Trait épais = climat de la tranchée, trait fin= climat du local.
©Etat de Vaud - Aventicum, 20137
Figure 11 : Filtre avec poids et nom de l'échantillon inscrit. ©HE-Arc CR, 2015
Figure 12 : Filtre et fraiseuse - le filtre aspire les poussières. ©HE-Arc CR, 2015
Figure 13 : Boîte hermétisée contenant les prélèvements contenant du gel de silice. ©HE-Arc CR, 2015.
Figure 14 : Echantillons séchés au four. ©HE-Arc CR, 2015
Figure 15 : Mesure des poids des échantillons au laboratoire d'Avenches. ©HE-Arc CR, 2015
Figure 16 : R ² x100 = proportion de corrélation entre les échantillons (45%). La différence de corrélation
entre ceux-ci est due à l'un des échantillons, qui contient une quantité particulièrement élevée de
ions peu conducteurs (point en bas à droite). ©HE-Arc CR, 2015
Figure 17 : $R^2x100 =$ proportion de corrélation entre les échantillons (98%). ©HE-Arc CR, 20159
Figure 18 : $R^2x100 =$ proportion de corrélation entre les échantillons (86%). ©HE-Arc CR, 2015 10
Figure 19 : $R^2x100 =$ proportion de corrélation entre les échantillons (99%). ©HE-Arc CR, 2015 10
Figure 20 : $R^2x100 =$ proportion de corrélation entre les échantillons (88%). ©HE-Arc CR, 2015 11
Figure 21 : $R^2x100 =$ proportion de corrélation entre les échantillons (82%). ©HE-Arc CR, 2015 11
Figure 22 : $R^2x100 =$ proportion de corrélation entre les échantillons (98%). ©HE-Arc CR, 2015 12
$Figure \ 23: Teneur \ en \ ions \ des \ trois \ profondeurs \ du \ prélèvement \ M8_PA. \ @HE-Arc \ CR, \ 2015. \ldots 16$
Figure 24 : Teneur en ions des trois profondeurs du prélèvement M8_PA après dessalement. $\[mbox{\sc w}]$ HE-Arc
CR, 2015
Figure 25 : Teneur en ions des trois profondeurs du prélèvement M8_PB. ©HE-Arc CR, 2015 17

Figure 26 : Teneur en ions des trois profondeurs du prélèvement M8_PB après dessalement. ©HE-Arc CR, 2015
Figure 27 : Teneur en ions des trois profondeurs du prélèvement M7_PA. ©HE-Arc CR, 2015
Figure 28 : Teneur en ions des trois profondeurs du prélèvement M7_PA après dessalement. ©HE-Arc
CR, 2015
Figure 29 : Teneur en ions des trois profondeurs du prélèvement M7_PB. ©HE-Arc CR, 2015 19
Figure 30 : Teneur en ions des trois profondeurs du prélèvement M7_PB après dessalement. ©HE-Arc
CR, 2015
Figure 31 : Teneur en ions des planelles non-salée, salée et après dessalement (AG00-AG8). © HE-Arc
CR, 2015
Figure 32 : Teneur en ions des compresses AKSF, AKSG, AKPF et AKPG avant utilisation. ©HE-Arc CR,
2015
Figure 33 : Bains salins contenant 3 planelles. ©HE-Arc CR, 2015
Figure 34 : Parafilm [®] sous la planelle. ©HE-Arc CR, 2015
Figure 35 : Planelles recouvertes de compresses installées dans l'armoire climatique. ©HE-Arc CR, 2015.
Figure 36 : Armoire climatique. ©HE-Arc CR, 2015
Figure 37 : Perte en eau des planelles durant 1 mois de séchage à 40°C. ©HE-Arc CR, 2015 22
Figure 38 : Vue rapprochée des derniers jours de séchage. ©HE-Arc CR, 2015 22
Figure 39 : Echantillons pour les analyses de porosimétrie. ©HE-Arc CR, 201525
Figure 40 : Echantillons de mortier. ©HE-Arc CR, 2015
Figure 41 : Boîte hermétisée par du scotch d'aluminium. ©HE-Arc CR, 2015
Figure 42 : dernier échantillons pour la porosimétrie. ©HE-Arc CR, 201526
Figure 43 : Imbibition en eau dégazée des échantillons de mortier sous vide. ©HE-Arc CR, 2015 26
Figure 44 : Mesure du poids des échantillons dans un panier en métal plongé dans l'eau, crocheté à une
balance. ©HE-Arc CR, 2015
Figure 45 : Installation de mise sous vide des échantillons afin des les imbiber d'eau dégazée. ©HE-Arc
CR, 2015
Figure 46 : Mosaïque n°8 avant dessalement. ©HE-Arc CR, 2015
Figure 47 : Dépose du papier japon sur la surface. ©HE-Arc CR, 2015
Figure 48 : application des compresses sous forme de pâte. ©HE-Arc CR, 2015 37
Figure 49 : Fin de l'application des compresses. ©HE-Arc CR, 2015
Figure 50 : Recouvrement des compresses avec du film alimentaire. ©HE-Arc CR, 2015 38
Figure 51 : Dépose des papiers japons sur la mosaïque n°7. ©HE-Arc CR, 2015
Figure 52 : Humidification du papier japon (gauche). ©HE-Arc CR, 2015
Figure 53 : Compresses appliquées à la surface. ©HE-Arc CR, 2015
Figure 54 : Recouvrement des compresses avec du film alimentaire. ©HE-Arc CR, 2015 39

HE-Arc CR, Master of Arts HES-SO in Conservation-restoration Barbezat Nadège, Dessalement de deux mosaïques d'Orbe-Boscéaz par application de compresses, 20.07.2015

Figure 55 : Installation photographique avant l'application des compresses. ©HE-Arc CR, 2015 40
Figure 56 : Humidification de la surface. ©HE-Arc CR, 2015 40
Figure 57 : Adhésion du papier japon à la surface par tatopage avec une brosse. ©HE-Arc CR, 2015.
Figure 58 : Retrait léger de l'eau de surface en surplus. ©HE-Arc CR, 2015 40
Figure 59 : Mélange de la pâte d'une compresse. ©HE-Arc CR, 2015
Figure 60 : Nettoyage de la surface à l'aide d'une brosse et d'une aspiration. ©HE-Arc CR, 2015 41
Figure 61 : Surface après dessalement et avant nettoyage. ©HE-Arc CR, 2015
Figure 62 : Surface après dessalement et après nettoyage. ©HE-Arc CR, 2015 41
Figure 63 : Emplacement des prélèvements M8_PB (droite) et M8_SF (gauche). ©HE-Arc CR, 2015. 42
Figure 64 : Emplacement des prélèvements M8_PA (droite) et M8_PF (gauche). ©HE-Arc CR, 2015. 42
Figure 65 : Emplacement des prélèvements M7_PB et M7_SG. ©HE-Arc CR, 2015 43
Figure 66 : Emplacement des prélèvements M7_PA et M7_PG. ©HE-Arc CR, 2015 43

Liste des tableaux

Tableau 1 : Teneur en ion avant et après dessalement des mosaïques et des planelles et des compresses
AKSF, AKSG, AKPF et AKPG avant dessalement en μ g/g. ©HE-Arc CR, 2015
Tableau 2 : Teneur en ion avant et après dessalement des mosaïques et des planelles et des compresses
AKSF, AKSG, AKPF et AKPG avant dessalement en μ moleq/g. ©HE-Arc CR, 201515
Tableau 3 : Conductivité des matériaux constitutifs des compresses calculés en TDS. % TDS =
pourcentage des sels par rapport au total des solides dissous. ©HE-Arc CR, 201523
Tableau 4 : Tableaux des conductivités avant et après dessalement de chacune des compresses
utilisées. Tableau de gauche : compresses des mosaïques. Tableau de droite : compresses des
planelles. NS = compresses sans sels, C1 = 1^{ere} compresse, C2 = 2^{eme} compresse, C3 = 3^{eme}
compresse. ©HE-Arc CR, 201524
Tableau 5 : Résultats des calculs de porosité faits au laboratoire d'Avenches. $\ensuremath{\mathbb{C}}$ HE-Arc CR, 201527
Tableau 6 : Equations physiques utilisées pour les calculs des volumes de porosité des matériaux. ©HE-
Arc CR, 2015