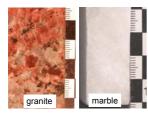
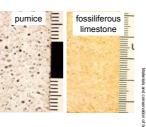


PETROPHYSICS

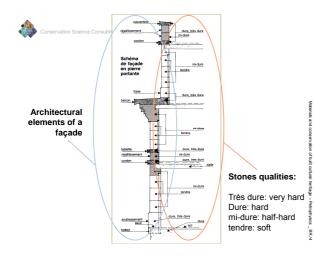
Physical properties of natural stone and other porous mineral materials

Depending on the use (cobblestone, stair, façade, carved element, pile of bridge...), stone must have different


BR/


physical characteristics.

The physical properties of stones depend on cementation, porosity...





 they depend on the origin of stones

BR/3

In the same exposure conditions, the durability of stones lying side by side depends on the liquids and gaseous exchanges between them and their environment (=physical properties)

Exchanges between stones and the environment depend on: - the quantity of the pore space - the quality of the pore space (geometry of pores, mineralogical nature of the inner surfaces...)

BR/6

Interactions between stones and conservation products are also strongly dependent on quantity and quality of the porous space

BR/7

BR/8

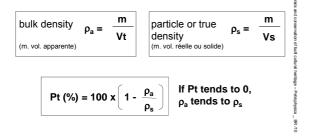
BR/9

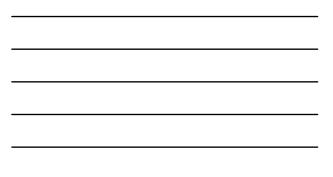
Conservation products for stones*, mechanical and/or chemical cleanings -as well as water and salts- can change the physical properties of stones

 * (consolidants, water-repellents, anti-graffiti products, paints, ...)

(Total) porosity

Definition: fraction of the total volume of a material « occupied » by voids


Pt (%) = 100 x
$$\frac{Vv}{Vt}$$
 = 100 x $\frac{Vv}{Vv + Vs}$


Pt= total porosityVt= bulk volumeVv= volume of the voidsVs= volume of solid

Densities and porosity

Density (masse volumique): quantity of solid matter contained in a given volume of material

Different kinds of porosity

• Primary (primaire): structural arrangement existing since the genesis of the stone

- Secondary (secondaire): results from the phenomena of deterioration, diagenesis, metamorphism ...
- Connected: voids communicating freely between them
- Occluded: not inter-connected voids
- Intergranular: voids between the constituent grains
- Intragranular: voids inside the constituent grains
- Micro- and macro- porosity : < or > to 7.5 µm

(from mercury injection porosimetry : injection PHg = 1 bar)

Different kinds of porosity

Porosity and water retention in soils

Pores	diameter	Water
Big pores	> 50 µm	free water - dry quickly and easily (no capillary action)
Medium pores	10 to 50 µm	free/capillary water - take time to the dry out ("coarser" part of the capillary porosity)
Fine pores	0.2 to 10 µm	capillary water - slow to dry, high capillary tension
Very fine pores	< 0.2 µm	linked (adsorbed) water - very difficult/impossible to dry

Total porosity ranges for various natural rocks

Rock type	Porosity (%)
sandstones	5 – 50
limestones	5 - 55
crystalline rocks	0 – (10)
volcanic rocks	0 - (90)
metamorphic rocks	0 - (50)

Sources: Freeze and Cherry (1979); McWorter and Sunada (1977).

Total porosity ranges for various natural swiss rocks

PIERRES	Masse	Résistance	Résistance	Porosité	Porosité	Dilatation	
NATURELLES	volumique	à la	à la flexion	totale	capillaire	hydrique	
	apparente	compression		(connectée)			
	t/m ³	N/mm ²	N/mm ²	Vol.%	Vol.%	mm/m	
R. MAGMATIQUES							
Plutoniques	2.6-3.0	80-300	10-40	0.4-1.5	0.2-1.2	0.06-0.2	
Volcaniques effusives	1.6-3.1	10-400	5-60	0.2-30	0.1-25	0.06-0.4	
R. SEDIMENTAIRES							
Calcaire/ dolomite dures	2.6-2.8	50-200	3-30	0.6-2	0.5-1.5	0.09-0.16	
Travertin / tuf calcaire	1.7-2.5	10-80	3-20	2-25	1.5-20		
Calcaire tendre	1.5-2	8-25	2-8	5-25	5-20	0.3-0.5	
Grès à ciment siliceux	2-2.6	40-250	7-33	1-25	1-20	0.3-0.6	
Grès à ciment calcaire	2-2.6	30-180	3-18	2-20	1-18	0.4-0.8	
Conglomérats	2.4-2.6	14-160	2-12	0.5-5	0.5-4	0.1-0.2	
R. METAMORPHIQUES							
Gneiss / migmatite	2.5-2.8	70-200	8-45	0.4-2.0	0.25-1.5		
Quarzite	2.6-2.7	100-300	14-60	0.4-2.0	0.2-1.5		
Schistes	2.5-2.7	50-150	8-40	0.6-3.0	0.5-2.5	0.2-0.6	
Serpentinite	2.6-2.75	55-200	11-60	0.3-2.0	0.25-0.18		
Marbre	2.5-2.7	40-230	10-40	0.3-0.8	0.2-0.5		
D'après Kündig R. et al., 1997. Die mineralischen Rohstoffe der Schweiz.							

Commission Géotechnique Suisse, Zürich, ETHZ

(connected) Porosity measurement

The « triple weighing* » method: (method of imbibition)

 $\mathbf{M}_{1} = \text{mass of the dried sample weighing in the air} \\ \mathbf{M}_{2} = \text{m. of the water saturated s.**, weighing in the air} \\ \mathbf{M}_{3} = \text{m. of the water saturated s.**, weighing underwater} \\ \mathbf{M}_{1} = (\rho_{s} \times Vs) \\ \mathbf{M}_{2} = (\rho_{s} \times Vs) + (\rho_{H2O} \times Vv) \\ \mathbf{M}_{3} = (\rho_{s} \times Vs) - (\rho_{H2O} \times Vs) \\ \text{avec } \rho_{H2O} = 1 \text{ g/cm}^{3} \\ \mathbf{Pt} = \frac{\mathbf{M}_{2} - \mathbf{M}_{1}}{\mathbf{M}_{2} - \mathbf{M}_{3}} \\ \mathbf{Water soluble phases !!!} \\ \mathbf{Water soluble phases !!!} \\ \mathbf{Water soluble phases extended} \\ \mathbf{Water soluble phases !!!} \\ \mathbf{Water soluble phases !!} \\ \mathbf{Water soluble phases !!!} \\ \mathbf{Water soluble phases !!} \\ \mathbf{Water soluble phases !!!} \\ \mathbf{Water soluble phases !!!} \\ \mathbf{Water soluble phases !!} \\ \mathbf{Water s$

*méthode de la triple pesée ** the connected porosity of samples are saturated with water under vaccum

(connected) Porosity measurement

The gas pycnometry method: (method of imbibition) Measurement of the volume of a sample (solid or powder). Principle: injection of a gas (He) from a closed volume of reference with a known pressure and a known volume to a closed volume containing the sample. According to the Boyle-Mariotte law, the difference in change of pressure gives the volume of the sample.

 V_1 = closed volume of reference

 V_0 = volume of the container with sample

 V_s = "solid" volume of the sample

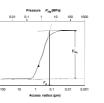
 P_1 = gas pressure in the reference container

 P_2 = gas pressure in the container with sample after expansion of the gas

(connected) Porosity measurement

Mercury intrusion porosimetry (MIP): (method of drainage) The technique involves the intrusion of mercury, a non-wetting liquid, at high pressure into a material through the use of a porosimeter. The pore size can be determined based on the external pressure needed to force the liquid into a pore against the opposing force of the liquid's surface tension (at 25° C γ = 0,474 N/m and the contact angle α = 130°)

(connected) Porosity measurement



With a known P_{Hg} on a known volume of mercury, all the pores with an access radius $\geq R$ can be filled

As P_{Hg} 7, the radius R of the pores that can be filled $\boldsymbol{\mathfrak{U}}$

V_{Hg} = bulk volume of intruded mercury (≈ Pt)

ra = threshold radius (the smallest radius giving access to the maximum porous volume)

Speed of sound, porosity and cementation

The time of transmission of the P waves (longitudinal) through the thickness of a porous material ↗ when: - the percentage of the void volume ↗

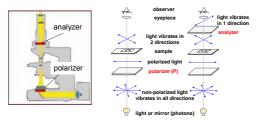
- the cementation degree

The Hooke's law (very) simplified allows to estimate the modulus of elasticity or Young's modulus (E):

$$Vp = \sqrt{\frac{E}{\rho_a}} \quad \Rightarrow relative value$$

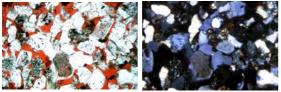
Conservation Science Consulting Sarl

Microscopic observation of thin sections of rocks (polarizing petrographic microscopy)


A thin section (*lame mince*) is a 30 µm thick strip of stone which is sticked on a glass slide. This sample can be observed with transmitted light because of its transparency.

Stages of manufacture:

- sawing a stone to « suger cube » (3 x 2 cm) size
- hardening using an epoxy resin
- polishing of one side which is then glued on the glass slide
- sawing, grinding, then polishing up to a thickness of 30 μm


The polarizing petrographic microscope

The optical properties of the minerals in a thin section alter the colour and intensity of the observed light. Minerals can be identified but porosity can also be observed

Microscopic observation of thin sections of rocks

os: D. Jear ette) Sar

 \Rightarrow mineralogy \Rightarrow geometry of the porous network (only for voids >1 $\mu m)$

Notion of climate:

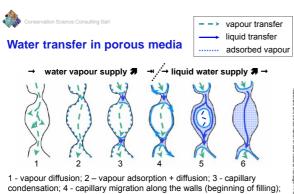
In french http://c2rmf.fr (29.10.2015) .fr/sites/c2rmf.fr/files/quest-ce_que_le_climat.pdf

sics.org/intro/fundamentals.php

http://www.kasuk jusqu'à la page 9 (29.10.2015)

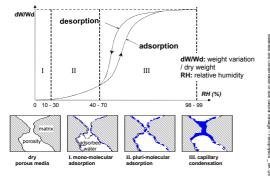
In English http://www.cons (29.10.2015)

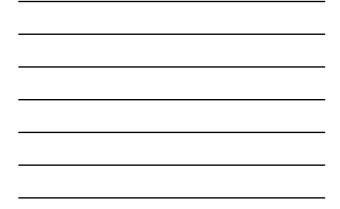
Température Humidité

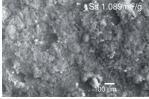

(relative et absolue)

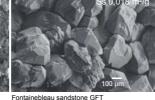
Point de rosée

BR /22




5 - hydraulic flow in unsturated media (filling in progression or finished); 6 - hydraulic flow in unsturated media According to Rose (1963)

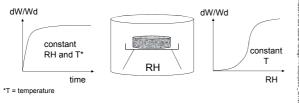

Water vapour in porous media: adsorption

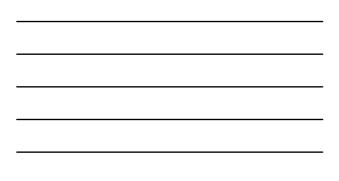


Water vapour in porous media: adsorption

Lourdines micrite MCL

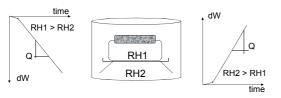
Hygroscopicity increases when:


 specific surface 7 (microporosity, content of clays – for example MCL hygroscopicity > GFT one)

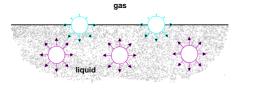

- content of soluble salts 🛪

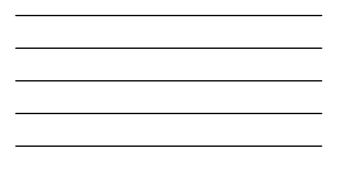
Water vapour in porous media: adsorption

To determine the kinetic adsorption and the adsorption isotherm, samples are first dried at 60°C then, they are placed in closed boxes where relative humidity is controlled. Then, they are weighted regularly until their mass becomes constant.

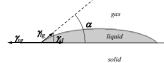


Water vapour in porous media: permeability


To determine the water vapour diffusivity or the permeability to water vapour samples are first dried at 60°C. Then they are packed in such a way that two opposite faces can exchange with two different relative humidities.



Liquid water in porous media - surface tension



The cause of surface tension in a liquid: a molecule in contact with a neighbour is in a lower state of energy than if it weren't in contact with a neighbour. The boundary molecules have fewer neighbours than interior molecules and are therefore in a higher state of energy than interior molecules => to minimize its energy state, a liquid must minimize its number of boundary molecules and therefore minimize its surface area => formation of "film" => formation of a drop ...

Liquid water in porous media - surface tension

 $\begin{array}{ll} \gamma_{sg} & \text{surface tension solid/gas} \\ \gamma_{lg} & \text{surface tension liquid/gas} \\ \gamma_{sl} & \text{surface tension solid/liquid} \\ \alpha & \text{contact angle solid/liquid} \end{array}$

Vati

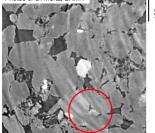
When a drop of liquid is deposited on a solid surface, the interface geometry depends on the affinity of each phase (solid, liquid, gas) to the other, or on their relative surface tensions

	5
Young-Dupré equation:	of built out
$\gamma_{ig} \cos \alpha = \gamma_{sg} - \gamma_{si}$	ural heritaç
	je – P
wetting liquid: α < 90°	etrophy
non-wetting liquid: α > 90° 🔍	vsics

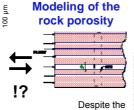
Liquid water in porous media - surface tension

Wetting of different fluids. *A* shows a fluid with very high surface tension (and thus little wetting), while *C* shows a fluid with very low surface tension (more wetting action.) A has a high contact angle, and C has a small contact angle.

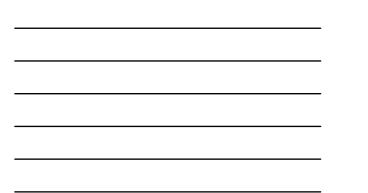
Examples: drops of oil, water and water + detergent


Liquid water in porous media - surface tension

For example, inorganic salts (in general!) increase the surface tension (decrease the wettability) of a solution, but alcohols or surfactants decrease the surface tension (increase the wettability) of the solutions


Some treatment effects:

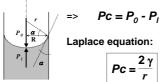
Hydrophobic and consolidating treatments decrease the wettability of the façade surfaces whereas cleaning products tend to increase this wettability



Buntsandstein sandsto « Grès à Meules » Micro computed tomography (x ray - synchrotron) slice thickness ~ 1.35 µm

complexity of the porous structures, it seems that a bundle of parallel capillaries, all of different diameters, embedded in a solid, is a perfect morphology model of a porous medium !!!

뜻



Liquid water in porous media - capillarity

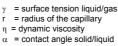
500 um

If a tube is sufficiently narrow and the liquid adhesion to its walls is sufficiently strong, surface tension can draw liquid up the tube in a phenomenon known as capillarity. In such a case, surface tensions are responsible for the capillary pressure (a tension in fact) and the formation of a meniscus at the liquid interface

- Pc = capillary pressure (= tension !) = pressure in the gas
 - = pressure in the liquid
- P_0 P_1 r = radius of curvature of the meniscus
- R radius of the capillarysurface tension liquid/gas
- γ

Liquid water in porous media - capillarity

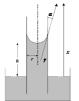
When the radius of the capillary R is very small, the meniscus is hemispherical and the radius of curvature r can then be connected to R:


The more wetting fluid moves spontaneously the less wetting fluid towards the outside of the capillary: this is called a capillary imbibition, succion or absorption (When a pressure is applied on the less wetting fluid, the more wetting fluid is forced out: this is called a drainage; the MIP for ex.)

Liquid water in porous media - capillarity

When a capillary tube is plunged in a liquid, the meniscus moves allong the tube.

The kinetic follows the Poiseuille law which is (if acceleration due to gravity is neglected) :

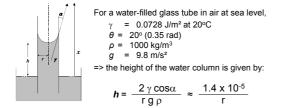


 $Q(\mathbf{x}) = \frac{\pi \gamma \cos \alpha r^3}{4 \eta \mathbf{x}}$

=> when r 7, Q 7

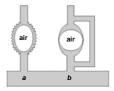
Liquid water in porous media - capillarity

When a capillary tube is plunged in a liquid, the meniscus moves allong the tube.

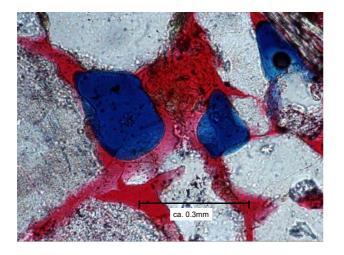

The height h of the liquid column at stady state is given by the Jurin's equation :

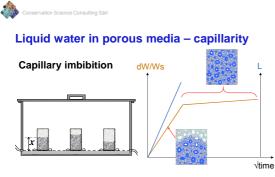
 $h = \frac{2\gamma\cos\alpha}{2\gamma\cos\alpha}$ rgρ

- = surface tension liquid/gas =
- γ g gravitiy = density of liquid
- ρ r =
- radius of the capillary contact angle solid/liquid = α
- => when r ↗, h ↘


Calculation examples

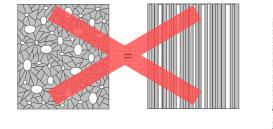
Thus for a 2 m wide (r = 1 m) tube, the water would rise an unnoticeable 0.014 mm. For a 2 cm wide tube (r = 1 cm), the water would rise 1.4 mm and for a capillary tube with r = 0.1 mm, the water would rise 14 cm.



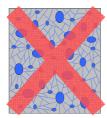

Liquid water in porous media - capillarity

Less wetting fluid trapped by the more wetting fluid during an imbibition because of: a. rugosity b. derivation The porosity of a rock (or a mortar, a concrete,...) is a complex system formed by interconnected wide and tiny pores. As a result, there are always many parallel ways for the capillary water during an imbibition.

This great complexity allows the water (more wetting fluid) to trap air (less wetting fluid) in parts of the porosity.



The kinetics of linear and mass capillary imbibitions of a stone show the complexity of the porous network


Liquid water in porous media - capillarity

Liquid water in porous media - capillarity

In a porous network partly formed of (connected) macropores, the water saturation of the porosity is not reached by simple capillarity

of built cultural heritage – Petrophysics _ BR /

Liquid water in porous media - capillarity

During a capillary imbibition:

Porosity freely accessible to water = free porosity Portion of porous space inaccessible = trapped porosity

The trapped porosity is caracterised by the capillary saturation coefficient or **Hirschwald coefficient (S%)**

 $S\% = \frac{P_i}{Pt} x \ 100$ where $Pi \ (\%) = \frac{M_i - M_1}{M_2 - M_3} x \ 100$

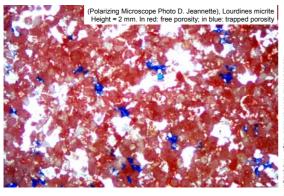
 P_i = porosity filled by water imbibition M_i = sample weight after water imbibition M₁, M₂, M₃: see page 15

Liquid water in porous media - gelivity

The ability to be more or less filled with water in the presence of air **is one of the lot of parameters** controling the frost resistance of a stone

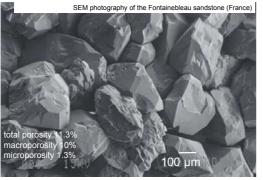
Estimation of frost resistance :

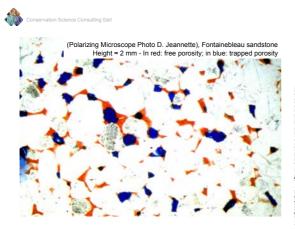
- In a "simplistic" way, a stone is described as
- frost susceptible if S% is > 0,85
- not frost susceptible if S% is < 0,75

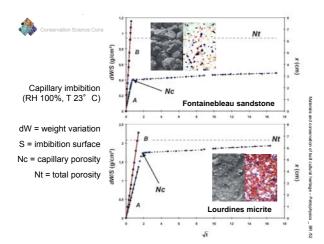

A high water saturation makes the stone frost susceptible (because of the volume expansion of about 9% - or a linear expansion of 3% - of this liquid when it freezes)



100 µm


ro - < r = 7.5 um < macro-porosity (p.11)



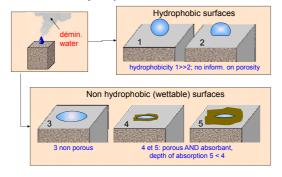


cro- < r = 7.5 μ m < macro-porosity (p.11)

nd conservation of built cultural heritage - Petrophysics BR /5

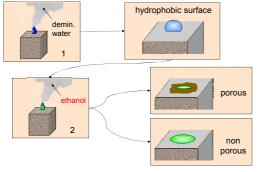
_ BR /50

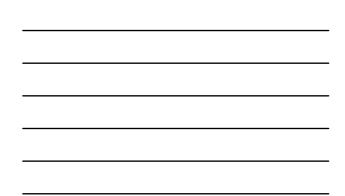
Liquid water in porous media - capillarity


- In general, the higher the dimension of the pores, the higher is the capillary imbibition velocity

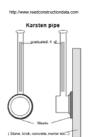
- if the linear capillarity is much faster than the massic one, the trapped porosity is high => even if water goes up high, the water saturation of the porosity remains low

- the more varied the pore sizes, the bigger is the trapped porosity: media with very homogeneous porosity can reach very high water saturation of the porosity (at least near the water source)




The (field) drop test to estimate if a material is porous and/or hydrophobic and/or absorbant

Conservation Science Consulting Sàrl


The (field) drop test to estimate if a material is porous and/or hydrophobic and/or absorbant

How to estimate the initial water absorption in the field: Karsten pipes

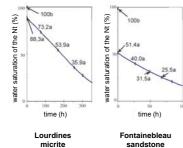
Final Report for the Research and Development Project Non-Destructive Field Tests in Stone Conservation Literature Study Rapport från Riksantikvarieämbetet 2006:3 // http://www.raa.se/publicerat/9172094345.pdf

BR /56

Conservation Science Consulting Sarl

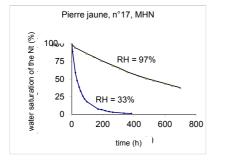
How to estimate the initial water or alcool absorption in the field: Mirowski pipes

Conservation Science Consulting Sar


How to estimate the initial water absorption in the field: contact sponge

Marini P., Bellopede R., 2009- Bowing of marble slabs: Evolution and correlation with mechanical decay. Construction and Building Materials, Vol. 23, Issue 7, pp 2599–2605

Liquid water in porous media - drying


Drying of a specific material is always much slower than its capillary imbibition

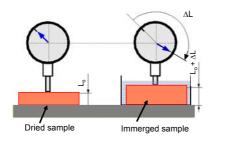
In general, the bigger the dimension of the pores of a material, the faster it dries

BK /29

Liquid water in porous media - drying

Liquid water in porous media – dilation (dilatation)

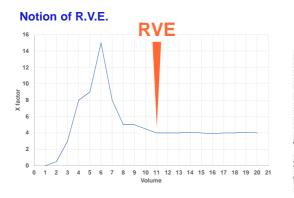
Every porous material changes more or less its dimensions when it adsorbs (vapor) or absorbs (liquid) water (because of a loss of cohesion between grains and or the swelling of clays). This phenomenon is called hydric dilation (with liquid water) or hygric dilation (with water vapour).


Hydric dilation measurement: the dried sample (length: L_0) is fixed under a dial test indicator (*comparateur*), then it is entirely immersed in water. The extension which is obtained after 72 hours of immersion allows to calculate the hydric dilation coefficient:

 $\varepsilon(72) = \frac{\Delta L (72 h)}{L_0}$ ε

 $\epsilon(72) \geq 2$ mm/m is regarded as high and dangerous

Liquid water in porous media - dilation (dilatation)


Notion of R.V.E.

Rocks are **heterogeneous materials** (mineralogy, porosity) on a scale of:

- pores
- samples
- outcrops (affleurements)

Therefore to be representative, measurements of physical and mechanical properties of rocks must be done on **Representative Volume Elements** (volumes élémentaires représentatifs).

Conservation Science Consulting Så

Bibliography

Dullien F.A.L., 1979 – Porous Media - Fluid transport and pore structure – Academic press, New York, 396p.

Fripiat J., Chaussidon J. et Jelli A., 1971 – Chimie physique des phénomènes de surface – Masson & Cie éd., Paris, 387p.

Guéguen Y. et Palciauskas V., 1992 – Introduction à la physique des roches – Hermann ed., Paris, 299p.

Jeannette, D. (1997). "Structures de porosité, mécanismes de transfert des solutions et principales altérations des roches des monuments." La pietra dei monumenti in ambiente fisico e culturale. Atti del 2° Corso Intensivo Europeo tenuto a Ravello e a Firenze dal 10 al 24 aprile 1994, 49-77.

Rousset Tournier B., 2001 - Transfert par capillarité et évaporation dans des roches - rôle des structures de porosité - Thèse Université Louis Pasteur Strasbourg I

http://www.kasuku.ch/pdf/hygrometrie.pdf