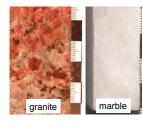
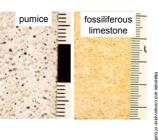


PETROPHYSICS

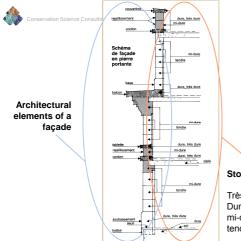
Physical properties of natural stone and other porous mineral materials

Depending on the use (cobblestone, stair, façade, carved element, pile of bridge...), stone must have different physical characteristics.




BR /3

BR /1


The physical properties of stones depend on cementation, porosity...

 they depend on the origin of stones

In the same exposure conditions, the durability of stones lying side by side depends on the liquids and gaseous exchanges between them and their environment (=physical properties)

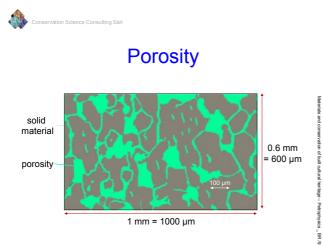
Lausanne, Cathedral, 10.04.2012

Exchanges between stones and the environment depend on: - the quantity of the pore space - the quality of the pore space (geometry of pores, mineralogical nature of the inner surfaces...)

_BR /6

Interactions between stones and conservation products are also strongly dependent on quantity and quality of the porous space

Patro

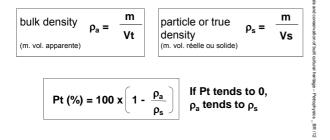

BR /7

BR /8

Conservation products for stones*, mechanical and/or chemical cleanings -as well as water and salts- can change the physical properties of stones

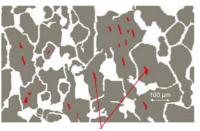
* (consolidants, water-repellents, anti-graffiti products, paints, ...)

BR /1

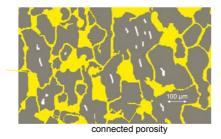

(Total) porosity

Definition: fraction of the total volume of a material « occupied » by voids

Pt (%) = 100 x
$$\frac{Vv}{Vt}$$
 = 100 x $\frac{Vv}{Vv + Vs}$
Pt = total porosity Vt = bulk volume
Vv = volume of the voids Vs = volume of solid


Densities and porosity

Density (masse volumique): quantity of solid matter contained in a given volume of material


Different kinds of porosity

occluded porosity

Different kinds of porosity

Different kinds of porosity

- Connected: voids communicating freely between them
- Occluded: not inter-connected voids

• **Primary** (primaire): structural arrangement existing since the genesis of the stone

• Secondary (secondaire): results from the phenomena of deterioration, diagenesis, metamorphism ...

- Intergranular: voids between the constituent grains
- Intragranular: voids inside the constituent grains

• Micro- and macro- porosity : < or > to 7.5 μm (from mercury injection porosimetry : injection PHg = 1 bar)

Different kinds of porosity

Porosity and water retention in soils

Pores	diameter	Water
Big pores	> 50 µm	free water - dry quickly and easily (no capillary action)
Medium pores	10 to 50 µm	free/capillary water - take time to the dry out ("coarser" part of the capillary porosity)
Fine pores	0.2 to 10 µm	capillary water - slow to dry, high capillary tension
Very fine pores	< 0.2 µm	linked (adsorbed) water - very difficult/impossible to dry

_

BR /16

viaterials and

BR /17

BR /18

Total porosity ranges for various natural rocks

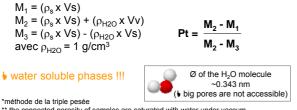
Rock type	Porosity (%)		
sandstones	5 – 50		
limestones	5 - 55		
crystalline rocks	0 – (10)		
volcanic rocks	0 - (90)		
metamorphic rocks	0 - (50)		

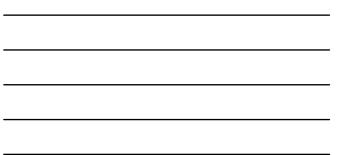
Sources: Freeze and Cherry (1979); McWorter and Sunada (1977).

Total porosity ranges for various natural swiss rocks

PIERRES NATURELLES	Masse volumique	Résistance à la	Résistance à la flexion	Porosité totale	Porosité capillaire	Dilatation hydrique
	apparente			(connectée)		
	t/m ³	N/mm ²	N/mm ²	Vol.%	Vol.%	mm/m
R. MAGMATIQUES						
Plutoniques	2.6-3.0	80-300	10-40	0.4-1.5	0.2-1.2	0.06-0.2
Volcaniques effusives	1.6-3.1	10-400	5-60	0.2-30	0.1-25	0.06-0.4
R. SEDIMENTAIRES						
Calcaire/ dolomite dures	2.6-2.8	50-200	3-30	0.6-2	0.5-1.5	0.09-0.16
Travertin / tuf calcaire	1.7-2.5	10-80	3-20	2-25	1.5-20	
Calcaire tendre	1.5-2	8-25	2-8	5-25	5-20	0.3-0.5
Grès à ciment siliceux	2-2.6	40-250	7-33	1-25	1-20	0.3-0.6
Grès à ciment calcaire	2-2.6	30-180	3-18	2-20	1-18	0.4-0.8
Conglomérats	2.4-2.6	14-160	2-12	0.5-5	0.5-4	0.1-0.2
R. METAMORPHIQUES						
Gneiss / migmatite	2.5-2.8	70-200	8-45	0.4-2.0	0.25-1.5	
Quarzite	2.6-2.7	100-300	14-60	0.4-2.0	0.2-1.5	
Schistes	2.5-2.7	50-150	8-40	0.6-3.0	0.5-2.5	0.2-0.6
Serpentinite	2.6-2.75	55-200	11-60	0.3-2.0	0.25-0.18	
Marbre	2.5-2.7	40-230	10-40	0.3-0.8	0.2-0.5	

D'après Kündig R. et al., 1997. Die mineralischen Rohstoffe der Schweiz. Commission Géotechnique Suisse, Zürich, ETHZ




(connected) Porosity measurement

The « triple weighing* » method: (method of imbibition)

 \mathbf{M}_{1} = mass of the dried sample weighing in the air M_2 = m. of the water saturated s.**, weighing in the air M_3 = m. of the water saturated s.**, weighing underwater

the connected porosity of samples are saturated with water under vaccum

(connected) Porosity measurement

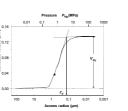
Mercury intrusion porosimetry (MIP): (method of drainage) The technique involves the intrusion of mercury, a non-wetting liquid, at high pressure into a material through the use of a porosimeter. The pore size can be determined based on the external pressure needed to force the liquid into a pore against the opposing force of the liquid's surface tension (at 25° C γ = 0,474 N/m and the contact angle α = 130°)

 $P_{Hg} - P_{vap} = \frac{2\gamma \cos \alpha}{\Gamma}$ as $P_{vap} \ll P_{Hg} \Rightarrow P_{Hg} = \frac{2\gamma \cos \alpha}{P}$ R R Ø of the Hg atom 0.3 nm BUT the Ø of the smallest b deformable materials ? accessible pores depends on the max. PHg (and the largest ones

(connected) Porosity measurement

MIP:

With a known $\boldsymbol{P}_{\boldsymbol{H}\boldsymbol{g}}$ on a known volume of mercury, all the pores with an access radius \geq **R** can be filled


depends on the min. PHg

. BR /2

As P_{Hg} , the radius R of the pores that can be filled >

 V_{Ha} = bulk volume of intruded mercury (≈ Pt)

ra = threshold radius (the smallest radius giving access to the maximum porous volume)

Sound velocity, porosity and cementation

The time of transmission of the P waves (longitudinal) through the thickness of a porous material \neg when:

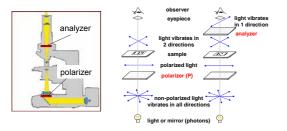
- the percentage of the void volume $\ensuremath{\mathcal{P}}$
- the cementation degree ע

The Hooke's law (very) simplified allows to estimate the modulus of elasticity or Young's modulus (E):

$$Vp = \sqrt{\frac{E}{\rho_a}}$$
 => relative value

Microscopic observation of thin sections of rocks (polarizing petrographic microscopy)

A thin section (*lame mince*) is a 30 µm thick strip of stone which is sticked on a glass slide. This sample can be observed with transmitted light because of its transparency.


Stages of manufacture:

- sawing a stone to « suger cube » (3 x 2 cm) size
- hardening using an epoxy resin
- polishing of one side which is then glued on the glass slide
- sawing, grinding, then polishing up to a thickness of 30 μm

BR /23

The polarizing petrographic microscope

The optical properties of the minerals in a thin section alter the colour and intensity of the observed light. Minerals can be identified but porosity can also be observed

Microscopic observation of thin sections of rocks

 \Rightarrow mineralogy

 \Rightarrow geometry of the porous network (only for voids >1 μ m)

Notion of climate:

In french http://c2rmf.fr/sites/c2rmf.fr/files/quest-ce_gue_le_climat.pdf (29.10.2015)

http://www.kasuku.ch/pdf/hygrometrie.pdf jusqu'à la page 9 (29.10.2015)

In English http://www.conservationphysics.org/intro/fundamentals.php (29.10.2015)

Température

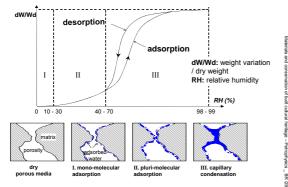
Humidité (relative et absolue)

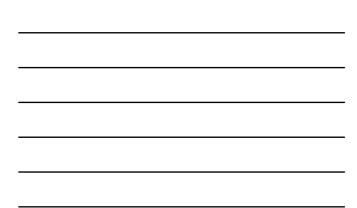
Point de rosée



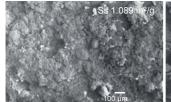
BR /25

and conservation of built cultural heritage - Petrophysics BR /2




condensation; 4 - capillary migration along the walls (beginning of filling);
5 - hydraulic flow in unsaturated media (filling in progression or finished);
6 - hydraulic flow in saturated media
According to Rose (1963)

Conservation Science Consulting Sarl


Water vapour in porous media: adsorption

Conservation Science Consulting Sarl

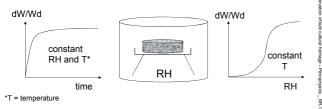
Water vapour in porous media: adsorption

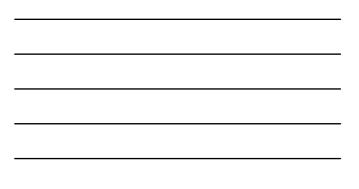
Ss 0,018 m²/g

Lourdines micrite MCL

Fontainebleau sandstone GFT

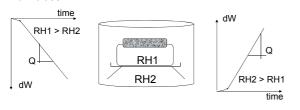
Hygroscopicity increases when:


- specific surface **ㅋ** (microporosity, content of clays – for example MCL hygroscopicity > GFT one)

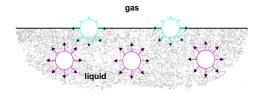

- content of soluble salts **7**

Water vapour in porous media: adsorption

To determine the kinetic adsorption and the adsorption isotherm, samples are first dried at 60°C then, they are placed in closed boxes where relative humidity is controlled. Then, they are weighted regularly until their mass becomes constant.



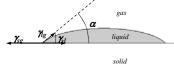
Water vapour in porous media: permeability


To determine the water vapour diffusivity or the permeability to water vapour samples are first dried at 60°C. Then they are packed in such a way that two opposite faces can exchange with two different relative humidities.

Liquid water in porous media - surface tension

The cause of surface tension in a liquid: a molecule in contact with a neighbour is in a lower state of energy than if it weren't in contact with a neighbour. The boundary molecules have fewer neighbours than interior molecules and are therefore in a higher state of energy than interior molecules => to minimize its energy state, a liquid must minimize its number of boundary molecules and therefore minimize its surface area => formation of "film" => formation of a drop ...

DIK / S



Liquid water in porous media - surface tension

 $\gamma_{\rm sg}$

γıg

γ_{sl}

When a drop of liquid is deposited on a solid surface, the interface geometry depends on the affinity of each phase (solid, liquid, gas) to the other, or on their relative surface tensions

α	contact angle solid/liquid	
Y	oung-Dupré equation:	vation of built cultura
γış	$_{g}\cos lpha = \gamma_{sg} - \gamma_{sl}$	ural heritag
		<u> </u>
	tting liquid: $\alpha < 90^{\circ}$	^o etrophysics_
		 ۳

BR /3:

BR /36

surface tension solid/gas

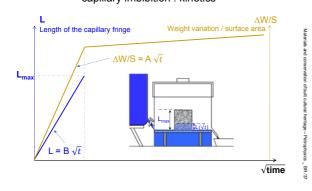
surface tension liquid/gas surface tension solid/liquid

Liquid water in porous media - surface tension

Wetting of different fluids. *A* shows a fluid with very **high surface tension** (and thus little wetting), while *C* shows a fluid with **very low surface tension** (more wetting action.) A has a high contact angle, and C has a small contact angle.

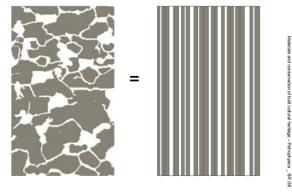
Examples: drops of oil, water and water + detergent

Liquid water in porous media - surface tension

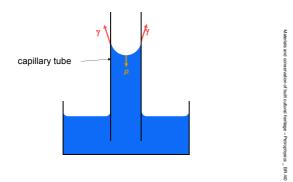

For example, inorganic salts (in general!) increase the surface tension (decrease the wettability) of a solution, but alcohols or surfactants decrease the surface tension (increase the wettability) of the solutions

Some treatment effects:

Hydrophobic and consolidating treatments decrease the wettability of the façade surfaces whereas cleaning products tend to increase this wettability

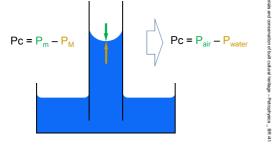

Liquid water in porous media – capillarity capillary imbibition : kinetics

Capillary water in porous media - model

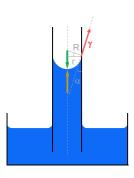


Liquid water in porous media – surface tension : hydrophilic solid + liquid water => spontaneous formation of menisci

Capillary water in porous media - model



vation Science Consulting Sàrl


Capillary water in porous media – model

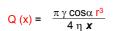
Capillary pressure (Pc) = pressure in the less wetting fluid (P_m) – pressure in the more wetting fluid (P_M)

Capillary water in porous media - model

Relation between Pc and the capillary radius (Laplace equation)

 $Pc = 2 \gamma / R$

Pc = capillairy pressure γ = surface tension liquid/gas R = radius of curvature of the menisc

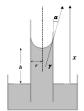

if r (capillary radius) is very small $=> Pc = 2 \gamma \cos \alpha / r$

Capillary water in porous media - model

When a capillary tube is plunged in a liquid, the meniscus moves allong the tube.

The kinetic follows the **Poiseuille law** which is (if acceleration due to gravity is neglected) :

=> when r 7, Q 7


$\begin{array}{ll} \gamma & = \mbox{ surface tension liquid/gas} \\ r & = \mbox{ radius of the capillary} \end{array}$

 η = dynamic viscosity α = contact angle solid/liquid

.

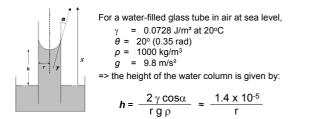
Conservation Science Consulting Sar

Capillary water in porous media - model

When a capillary tube is plunged in a liquid, the meniscus moves allong the tube.

The height *h* of the liquid column at stady state is given by the Jurin's equation : $h = \frac{2\gamma \cos\alpha}{2}$

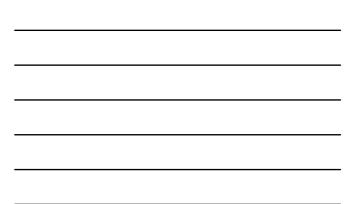
- γ = surface tension liquid/gas
- g = gravitiy
- ρ = density of liquid
- r = radius of the capillary $<math>\alpha = contact angle solid/liquid$



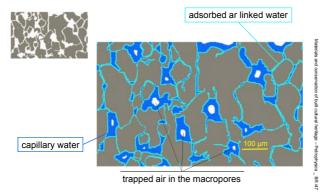
BR /4-

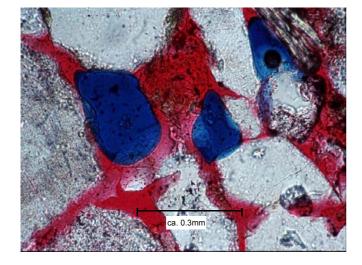
BR /4

Calculation examples

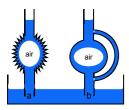

Thus for a 2 m wide (r = 1 m) tube, the water would rise an unnoticeable 0.014 mm.

For a 2 cm wide tube (r = 1 cm), the water would rise 1.4 mm and for a capillary tube with r = 0.1 mm, the water would rise 14 cm.


Capillary water in porous media - real life

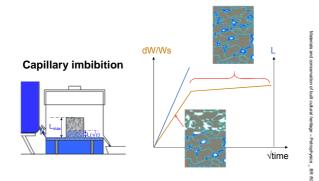


Liquid water in porous media - capillarity



Liquid water in porous media - capillarity

Less wetting fluid trapped by the more wetting fluid during an imbibition because of: a. rugosity b. derivation


The porosity of a rock (or a mortar, a concrete,...) is a complex system formed by interconnected wide and tiny pores. As a result, there are always many parallel ways for the capillary water during an imbibition.

This great complexity allows the water (more wetting fluid) to trap air (less wetting fluid) in parts of the porosity.

BR /4

Liquid water in porous media - capillarity

Liquid water in porous media - capillarity

During a capillary imbibition:

Porosity freely accessible to water = free porosity Portion of porous space inaccessible = trapped porosity

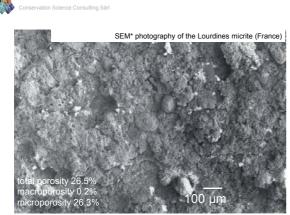
The trapped porosity is caracterised by the capillary saturation coefficient or **Hirschwald coefficient (S%)**

$$S\% = \frac{P_i}{Pt} x \ 100$$
 where $Pi(\%) = \frac{M_i - M_1}{M_2 - M_3} x \ 100$

 P_i = porosity filled by water imbibition M_i = sample weight after water imbibition

 M_1 , M_2 , M_3 : see page 15

17


Liquid water in porous media - gelivity

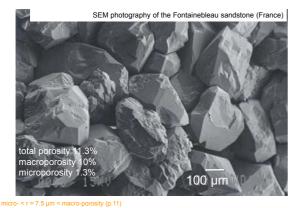
The ability to be more or less filled with water in the presence of air **is one of the lot of parameters** controling the frost resistance of a stone

Estimation of frost resistance :

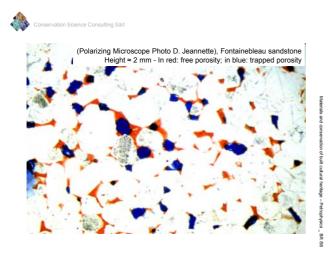

In a "simplistic" way, a stone is described as • frost susceptible if S% is > 0,85 • not frost susceptible if S% is < 0,75

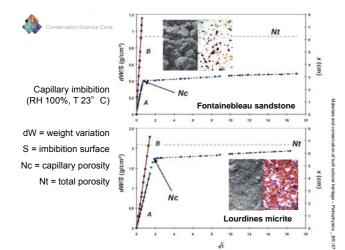
A high water saturation makes the stone frost susceptible (because of the volume expansion of about 9% - or a linear expansion of 3% - of this liquid when it freezes)

ro- < r = 7.5 µm < macro-porosity (p.11)

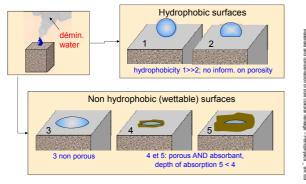

*SEM: Scanning Electron Microscope

als and conservation of built cultural heritage - Petrophysics _ BR


BR /5

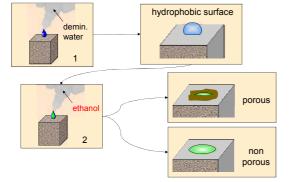


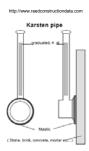
Liquid water in porous media - capillarity


- In general, the higher the dimension of the pores, the higher is the capillary imbibition velocity

- if the linear capillarity is much faster than the massic one, the trapped porosity is high => even if water goes up high, the water saturation of the porosity remains low

- the more varied the pore sizes, the bigger is the trapped porosity: media with very homogeneous porosity can reach very high water saturation of the porosity (at least near the water source)


The (field) drop test to estimate if a material is porous and/or hydrophobic and/or absorbant


The (field) drop test to estimate if a material is porous and/or hydrophobic and/or absorbant

How to estimate the initial water absorption in the field: Karsten pipes



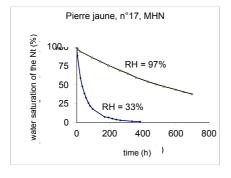
Final Report for the Research and Development Project Non-Destructive Field Tests in Stone Conservation Literature Study Rapport från Riksantikvarieämbetet 2006:3 // http://www.raa.se/publicerat/9172094345.pdf

BR /6

BR /62

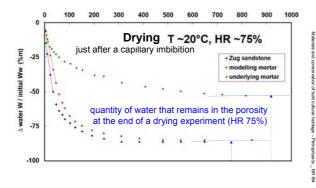
BR /63

How to estimate the initial water absorption in the field: contact sponge

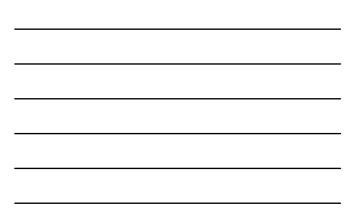


Marini P., Bellopede R., 2009- Bowing of marble slabs: Evolution and correlation with mechanical decay. Construction and Building Materials, Vol. 23, Issue 7, pp 2599–2605

A ation Science Consulting Sàrl

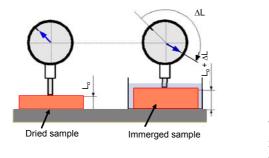

Liquid water in porous media - drying

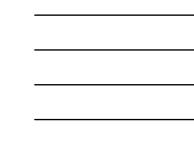
Liquid water in porous media - drying


Liquid water in porous media – dilation (dilatation)

Every porous material changes more or less its dimensions when it adsorbs (vapor) or absorbs (liquid) water (because of a loss of cohesion between grains and or the swelling of clays). This phenomenon is called hydric dilation (with liquid water) or hygric dilation (with water vapour).

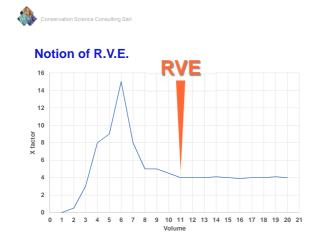
Hydric dilation measurement: the dried sample (length: L_0) is fixed under a dial test indicator (*comparateur*), then it is entirely immersed in water. The extension which is obtained after 72 hours of immersion allows to calculate the hydric dilation coefficient:




 $\epsilon(72) \ge 2 \text{ mm/m}$ is regarded as high and dangerous

Liquid water in porous media - dilation (dilatation)

Notion of R.V.E.


Rocks are heterogeneous materials (mineralogy, porosity) on a scale of:

- pores

- samples
- outcrops (affleurements)

Therefore to be representative, measurements of physical and mechanical properties of rocks must be done on **Representative Volume Elements** (volumes élémentaires représentatifs).

BR /68

Bibliography

Dullien F.A.L., 1979 – Porous Media - Fluid transport and pore structure – Academic press, New York, 396p.

Fripiat J., Chaussidon J. et Jelli A., 1971 – Chimie physique des phénomènes de surface – Masson & Cie éd., Paris, 387p.

Guéguen Y. et Palciauskas V., 1992 – Introduction à la physique des roches – Hermann ed., Paris, 299p.

Jeannette, D. (1997). "Structures de porosité, mécanismes de transfert des solutions et principales altérations des roches des monuments." La pietra dei monumenti in ambiente fisico e culturale. Atti del 2° Corso Intensivo Europeo tenuto a Ravello e a Firenze dal 10 al 24 aprile 1994, 49-77.

Rousset Tournier B., 2001 - Transfert par capillarité et évaporation dans des roches - rôle des structures de porosité - Thèse Université Louis Pasteur Strasbourg I

_ BR /70

http://www.kasuku.ch/pdf/hygrometrie.pdf